TY - JOUR
T1 - Cleaner continuous flow production of mesoporous calcium-magnesium silicate as a potential biomaterial
AU - Zhou, Chun Hui
AU - Xia, Shu Ting
AU - Komarneni, Sridhar
AU - Kabwe, Freeman Bwalya
AU - Jin, Gui Chen
AU - Chu, Mao Quan
N1 - Publisher Copyright:
© 2019, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Dolomite is an abundant, naturally occurring carbonate mineral, but the conventional processes of converting dolomite to new materials are time-consuming and energy-intensive. In addition, products from dolomite such as magnesium oxide, magnesium carbonate, magnesium hydroxide, which are used as adsorbents and additives, are mostly low value-added. Here, we demonstrated the conversion of dolomite to a mesoporous calcium-magnesium silicate (m-CMS) using a green and efficient continuous-flow synthesis method. The samples were characterized using powder X-ray diffraction, Fourier transformed infrared spectroscopy, N2 adsorption/desorption isotherms, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The material possessed mesoporosity and exhibited high a specific surface area of 629 m2/g and a pore volume of 0.66 cm3/g. The maximum water absorptivity of the sample was 52.6%. After the m-CMS immersing in Tris–HCl solution for 56 days, the weight loss ratio reached 30 wt%, indicating its good potential biodegradability. Hydroxyapatite was formed on the surfaces after the m-CMS was immersed in simulated body fluids. The m-CSM provided nucleation sites, and subsequently supplied Ca2+ for hydroxyapatite crystal growth, indicating that the material has potential bone conduction capability. This work suggests that m-CMS can be synthesized from dolomite and tetraethyl orthosilicate through a quick continuous process, and that the m-CMS could be used as a biomaterial.
AB - Dolomite is an abundant, naturally occurring carbonate mineral, but the conventional processes of converting dolomite to new materials are time-consuming and energy-intensive. In addition, products from dolomite such as magnesium oxide, magnesium carbonate, magnesium hydroxide, which are used as adsorbents and additives, are mostly low value-added. Here, we demonstrated the conversion of dolomite to a mesoporous calcium-magnesium silicate (m-CMS) using a green and efficient continuous-flow synthesis method. The samples were characterized using powder X-ray diffraction, Fourier transformed infrared spectroscopy, N2 adsorption/desorption isotherms, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The material possessed mesoporosity and exhibited high a specific surface area of 629 m2/g and a pore volume of 0.66 cm3/g. The maximum water absorptivity of the sample was 52.6%. After the m-CMS immersing in Tris–HCl solution for 56 days, the weight loss ratio reached 30 wt%, indicating its good potential biodegradability. Hydroxyapatite was formed on the surfaces after the m-CMS was immersed in simulated body fluids. The m-CSM provided nucleation sites, and subsequently supplied Ca2+ for hydroxyapatite crystal growth, indicating that the material has potential bone conduction capability. This work suggests that m-CMS can be synthesized from dolomite and tetraethyl orthosilicate through a quick continuous process, and that the m-CMS could be used as a biomaterial.
UR - http://www.scopus.com/inward/record.url?scp=85076097381&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076097381&partnerID=8YFLogxK
U2 - 10.1007/s10934-019-00829-4
DO - 10.1007/s10934-019-00829-4
M3 - Article
AN - SCOPUS:85076097381
SN - 1380-2224
VL - 27
SP - 503
EP - 513
JO - Journal of Porous Materials
JF - Journal of Porous Materials
IS - 2
ER -