TY - JOUR
T1 - Climate and bark beetle effects on forest productivity—linking dendroecology with forest landscape modeling
AU - Kretchun, Alec M.
AU - Louise Loudermilk, E.
AU - Scheller, Robert M.
AU - Hurteau, Matthew D.
AU - Belmecheri, Soumaya
N1 - Publisher Copyright:
© 2016, Canadian Science Publishing. All rights reserved.
PY - 2016/5/24
Y1 - 2016/5/24
N2 - In forested systems throughout the world, climate influences tree growth and aboveground net primary productivity (ANPP). The effects of extreme climate events (i.e., drought) on ANPP can be compounded by biotic factors (e.g., insect outbreaks). Understanding the contribution of each of these influences on growth requires information at multiple spatial scales and is essential for understanding regional forest response to changing climate. The mixed conifer forests of the Lake Tahoe Basin, California and Nevada, provide an opportunity to analyze biotic and abiotic influences on ANPP. Our objective was to evaluate the influence of moisture stress (climatic water deficit, CWD) and bark beetles on basin-wide ANPP from 1987 to 2006, estimated through tree core increments and a landscape simulation model (LANDIS-II). Tree ring data revealed that ANPP increased throughout this period and had a nonlinear relationship to water demand. Simulation model results showed that despite increased complexity, simulations that include moderate moisture sensitivity and bark beetle outbreaks most closely approximated the field-derived ANPP~CWD relationship. Although bark beetle outbreaks and episodic drought-induced mortality events are often correlated, decoupling them within a simulation model offers insight into assessing model performance, as well as examining how each contributes to total declines in productivity.
AB - In forested systems throughout the world, climate influences tree growth and aboveground net primary productivity (ANPP). The effects of extreme climate events (i.e., drought) on ANPP can be compounded by biotic factors (e.g., insect outbreaks). Understanding the contribution of each of these influences on growth requires information at multiple spatial scales and is essential for understanding regional forest response to changing climate. The mixed conifer forests of the Lake Tahoe Basin, California and Nevada, provide an opportunity to analyze biotic and abiotic influences on ANPP. Our objective was to evaluate the influence of moisture stress (climatic water deficit, CWD) and bark beetles on basin-wide ANPP from 1987 to 2006, estimated through tree core increments and a landscape simulation model (LANDIS-II). Tree ring data revealed that ANPP increased throughout this period and had a nonlinear relationship to water demand. Simulation model results showed that despite increased complexity, simulations that include moderate moisture sensitivity and bark beetle outbreaks most closely approximated the field-derived ANPP~CWD relationship. Although bark beetle outbreaks and episodic drought-induced mortality events are often correlated, decoupling them within a simulation model offers insight into assessing model performance, as well as examining how each contributes to total declines in productivity.
UR - http://www.scopus.com/inward/record.url?scp=84982802794&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982802794&partnerID=8YFLogxK
U2 - 10.1139/cjfr-2016-0103
DO - 10.1139/cjfr-2016-0103
M3 - Article
AN - SCOPUS:84982802794
SN - 0045-5067
VL - 46
SP - 1026
EP - 1034
JO - Canadian Journal of Forest Research
JF - Canadian Journal of Forest Research
IS - 8
ER -