Climate and Land Use Driven Ecosystem Homogenization in the Prairie Pothole Region

Kyle McLean, David Mushet, Jon Sweetman

Research output: Contribution to journalReview articlepeer-review

3 Scopus citations

Abstract

The homogenization of freshwater ecosystems and their biological communities has emerged as a prevalent and concerning phenomenon because of the loss of ecosystem multifunctionality. The millions of prairie-pothole wetlands scattered across the Prairie Pothole Region (hereafter PPR) provide critical ecosystem functions at local, regional, and continental scales. However, an estimated loss of 50% of historical wetlands and the widespread conversion of grasslands to cropland make the PPR a heavily modified landscape. Therefore, it is essential to understand the current and potential future stressors affecting prairie-pothole wetland ecosystems in order to conserve and restore their functions. Here, we describe a conceptual model that illustrates how (a) historical wetland losses, (b) anthropogenic landscape modifications, and (c) climate change interact and have altered the variability among remaining depressional wetland ecosystems (i.e., ecosystem homogenization) in the PPR. We reviewed the existing literature to provide examples of wetland ecosystem homogenization, provide implications for wetland management, and identify informational gaps that require further study. We found evidence for spatial, hydrological, chemical, and biological homogenization of prairie-pothole wetlands. Our findings indicate that the maintenance of wetland ecosystem multifunctionality is dependent on the preservation and restoration of heterogenous wetland complexes, especially the restoration of small wetland basins.

Original languageEnglish (US)
Article number3106
JournalWater (Switzerland)
Volume14
Issue number19
DOIs
StatePublished - Oct 2022

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Biochemistry
  • Aquatic Science
  • Water Science and Technology

Cite this