Abstract
The livestock industries are a major contributor to the economy of the northeastern United States. Climate models predict increased average maximum temperatures, days with temperatures exceeding 25 °C, and higher annual precipitation in the Northeast. These environmental changes combined with increased atmospheric CO2 concentration are expected to either increase or decrease forage productivity depending on the crop, and may decrease protein content and forage digestibility. Winter damage to sensitive forage species may also increase. Predicted temperature increases are expected to reduce fertility in dairy cattle and heat stress-induced inflammation may limit energy available for productive functions. Additional loss in milk production due to decreased feed intake is estimated to be up to 1% of the projected annual milk production through 2100. The effects of climate change on the beef industry in the Northeast are expected to be minimal. Broiler production in the region may benefit from warmer winter and summer temperatures, but future housing will require greater insulation and ventilation fan capacity. Providing adequate housing and ventilation to offset climate changes will also be important for the layer industry and will likely increase the price of eggs. Climate change is expected to have an economic impact on the horse industry in the region through additional management of land and forage resources, building of shelters, and heat abatement at equine events. Increased temperatures and more intense storms will increase nutrient losses and gaseous emissions from animal manure. Uncertainties about how host animals, pathogens, and disease vectors will respond to climate change highlight the need for continued animal health monitoring.
Original language | English (US) |
---|---|
Pages (from-to) | 33-45 |
Number of pages | 13 |
Journal | Climatic Change |
Volume | 146 |
Issue number | 1-2 |
DOIs | |
State | Published - Jan 1 2018 |
All Science Journal Classification (ASJC) codes
- Global and Planetary Change
- Atmospheric Science