TY - JOUR
T1 - Closing the gap
T2 - A learning algorithm for lost-sales inventory systems with lead times
AU - Zhang, Huanan
AU - Chao, Xiuli
AU - Shi, Cong
N1 - Publisher Copyright:
Copyright: © 2019 INFORMS
PY - 2020/5
Y1 - 2020/5
N2 - We consider a periodic-review, single-product inventory system with lost sales and positive lead times under censored demand. In contrast to the classical inventory literature, we assume the firm does not know the demand distribution a priori and makes an adaptive inventory-ordering decision in each period based only on the past sales (censored demand) data. The standard performance measure is regret, which is the cost difference between a learning algorithm and the clairvoyant (full-information) benchmark. When the benchmark is chosen to be the (full-information) optimal base-stock policy, Huh et al. [Huh WT, Janakiraman G, Muckstadt JA, Rusmevichientong P (2009a) An adaptive algorithm for finding the optimal base-stock policy in lost sales inventory systems with censored demand. Math. Oper. Res. 34(2):397-416.] developed a nonparametric learning algorithm with a cubic-root convergence rate on regret. An important open question is whether there exists a nonparametric learning algorithm whose regret rate matches the theoretical lower bound of any learning algorithms. In this work, we provide an affirmative answer to this question. More precisely, we propose a new nonparametric algorithm termed the simulated cycle-update policy and establish a square-root convergence rate on regret, which is proven to be the lower bound of any learning algorithm. Our algorithm uses a random cycle-updating rule based on an auxiliary simulated system running in parallel and also involves two new concepts, namely the withheld on-hand inventory and the double-phase cycle gradient estimation. The techniques developed are effective for learning a stochastic system with complex system dynamics and lasting impact of decisions.
AB - We consider a periodic-review, single-product inventory system with lost sales and positive lead times under censored demand. In contrast to the classical inventory literature, we assume the firm does not know the demand distribution a priori and makes an adaptive inventory-ordering decision in each period based only on the past sales (censored demand) data. The standard performance measure is regret, which is the cost difference between a learning algorithm and the clairvoyant (full-information) benchmark. When the benchmark is chosen to be the (full-information) optimal base-stock policy, Huh et al. [Huh WT, Janakiraman G, Muckstadt JA, Rusmevichientong P (2009a) An adaptive algorithm for finding the optimal base-stock policy in lost sales inventory systems with censored demand. Math. Oper. Res. 34(2):397-416.] developed a nonparametric learning algorithm with a cubic-root convergence rate on regret. An important open question is whether there exists a nonparametric learning algorithm whose regret rate matches the theoretical lower bound of any learning algorithms. In this work, we provide an affirmative answer to this question. More precisely, we propose a new nonparametric algorithm termed the simulated cycle-update policy and establish a square-root convergence rate on regret, which is proven to be the lower bound of any learning algorithm. Our algorithm uses a random cycle-updating rule based on an auxiliary simulated system running in parallel and also involves two new concepts, namely the withheld on-hand inventory and the double-phase cycle gradient estimation. The techniques developed are effective for learning a stochastic system with complex system dynamics and lasting impact of decisions.
UR - http://www.scopus.com/inward/record.url?scp=85084915767&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084915767&partnerID=8YFLogxK
U2 - 10.1287/mnsc.2019.3288
DO - 10.1287/mnsc.2019.3288
M3 - Article
AN - SCOPUS:85084915767
SN - 0025-1909
VL - 66
SP - 1962
EP - 1980
JO - Management Science
JF - Management Science
IS - 5
ER -