CLR: A collaborative location recommendation framework based on co-clustering

Kenneth Wai Ting Leung, Dik Lun Lee, Wang Chien Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

123 Scopus citations

Abstract

GPS data tracked on mobile devices contains rich information about human activities and preferences. In this paper, GPS data is used in location-based services (LBSs) to provide collaborative location recommendations. We observe that most existing LBSs provide location recommendations by clustering the User-Location matrix. Since the User-Location matrix created based on GPS data is huge, there are two major problems with these methods. First, the number of similar locations that need to be considered in computing the recommendations can be numerous. As a result, the identification of truly relevant locations from numerous candidates is challenging. Second, the clustering process on large matrix is time consuming. Thus, when new GPS data arrives, complete re-clustering of the whole matrix is infeasible. To tackle these two problems, we propose the Collaborative Location Recommendation (CLR) framework for location recommendation. By considering activities (i.e., temporal preferences) and different user classes (i.e., Pattern Users, Normal Users, and Travelers) in the recommendation process, CLR is capable of generating more precise and refined recommendations to the users compared to the existing methods. Moreover, CLR employs a dynamic clustering algorithm CADC to cluster the trajectory data into groups of similar users, similar activities and similar locations efficiently by supporting incremental update of the groups when new GPS trajectory data arrives. We evaluate CLR with a real-world GPS dataset, and confirm that the CLR framework provides more accurate location recommendations compared to the existing methods.

Original languageEnglish (US)
Title of host publicationSIGIR'11 - Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery
Pages305-314
Number of pages10
ISBN (Print)9781450309349
DOIs
StatePublished - 2011
Event34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011 - Beijing, China
Duration: Jul 24 2011Jul 28 2011

Publication series

NameSIGIR'11 - Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval

Other

Other34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011
Country/TerritoryChina
CityBeijing
Period7/24/117/28/11

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint

Dive into the research topics of 'CLR: A collaborative location recommendation framework based on co-clustering'. Together they form a unique fingerprint.

Cite this