Co-Evolution of Specific Stiffness and Permeability of Rock Fractures Offset in Shear

Xinxin He, Pengliang Yu, Agathe Eijsink, Chris Marone, Parisa Shokouhi, Jacques Riviere, Shimin Liu, Derek Elsworth

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Fractures and faults represent planes of weakness and compliance in rock masses that serve as focal points for both microearthquakes and fluid transport, with seismicity and permeability evolution closely linked. Contact stiffness is highly stress-sensitive and directly influences permeability. We explore the co-evolution of specific stiffness and permeability of rough fractures under normal stress and shear offset using numerical simulations. Individual rough fractures are represented by variable amplitude (Root mean square) and wavelength (λ) using a granular mechanics model. Contacting rough surfaces are mated, offset in shear, and then compacted in displacement mode. The compacting fractures generate stress-dependent changes in contact porosity, which govern both permeability and stiffness evolution. We establish a universal dimensionless relationship linking specific stiffness and permeability that inherently incorporates the effects of surface roughness, shear offset, and microcracking. The observed cracking effect—where local stress redistribution and pressure-driven microcrack propagation dynamically alter the aperture field—introduces a nonlinear permeability response at high stress. Increased roughness amplitude and larger shear offsets reduce stiffness while dampening permeability sensitivity to stress, demonstrating a strong interplay between surface texture and hydro-mechanical behavior. While the model captures this behavior effectively, deviations emerge at very low porosities due to extreme aperture sensitivity in this limit.

Original languageEnglish (US)
Article numbere2024JB030633
JournalJournal of Geophysical Research: Solid Earth
Volume130
Issue number5
DOIs
StatePublished - May 2025

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Co-Evolution of Specific Stiffness and Permeability of Rock Fractures Offset in Shear'. Together they form a unique fingerprint.

Cite this