Co-extruded multilayer films for high capacity optical data storage

Cory W. Christenson, Chris Ryan, Brent Valle, Anuj Saini, Joseph Lott, Jack Johnson, David Schiraldi, Christoph Weder, Eric Baer, Kenneth D. Singer, Jie Shan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations


New approaches for optical data storage (ODS) applications are needed to meet the future requirements of applications in multimedia, archiving, security, and many others. Commercial data storage technologies are moving to threedimensional (3D) materials, but the capacity is limited by the fabrication cost and the number of layers that can be addressed using the reflection-based storage mechanism. We demonstrate here storage systems based on co-extrusion of multilayer (ML) films that can overcome these problems. The organic roll-to-roll films produced can easily be produced hundreds of meters in length, in a far simpler and cheaper manner than current manufacturing methods such as spin coating and lamination. The medium consists of alternating active and buffer layers, and data storage is demonstrated by writing images in 23 layers of 78 μm thick films by fluorescence (FL) quenching of an organic dye. The areal data resolution is at the diffraction limit of the CW Blu-ray (BR) laser employed, and the co-extrusion technique allows for small layer spacings, leading to a total bit density 1.2 Tb/cm3. We anticipate materials already demonstrated successful for 3D ODS will be adapted to this technique, as well as new systems developed, to take full advantage of this medium.

Original languageEnglish (US)
Title of host publicationCurrent Developments in Lens Design and Optical Engineering XIII
StatePublished - 2012
EventCurrent Developments in Lens Design and Optical Engineering XIII - San Diego, CA, United States
Duration: Aug 13 2012Aug 15 2012

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X


OtherCurrent Developments in Lens Design and Optical Engineering XIII
Country/TerritoryUnited States
CitySan Diego, CA

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Co-extruded multilayer films for high capacity optical data storage'. Together they form a unique fingerprint.

Cite this