TY - JOUR
T1 - Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions
AU - Artsimovitch, Irina
AU - Svetlov, Vladimir
AU - Murakami, Katsuhiko S.
AU - Landick, Robert
PY - 2003/4/4
Y1 - 2003/4/4
N2 - The study of mutant enzymes can reveal important details about the fundamental mechanism and regulation of RNA polymerase, the central enzyme of gene expression. However, such studies are complicated by the multisubunit structure of RNA polymerase and by its indispensability for cell growth. Previously, mutant RNA polymerases have been produced by in vitro assembly from isolated subunits or by in vivo assembly upon overexpression of a single mutant subunit. Both approaches can fail if the mutant subunit is toxic or incorrectly folded. Here we describe an alternative strategy, co-overexpression and in vivo assembly of RNA polymerase subunits, and apply this method to characterize the role of sequence insertions present in the Escherichia coli enzyme. We find that co-overexpression of its subunits allows assembly of an RNA polymerase lacking a 188-amino acid insertion in the β′ subunit. Based on experiments with this and other mutant E. coli enzymes with precisely excised sequence insertions, we report that the β′ sequence insertion and, to a lesser extent, an N-terminal β sequence insertion confer characteristic stability to the open initiation complex, frequency of abortive initiation, and pausing during transcript elongation relative to RNA polymerases, such as that from Bacillus subtilis, that lack the sequence insertions.
AB - The study of mutant enzymes can reveal important details about the fundamental mechanism and regulation of RNA polymerase, the central enzyme of gene expression. However, such studies are complicated by the multisubunit structure of RNA polymerase and by its indispensability for cell growth. Previously, mutant RNA polymerases have been produced by in vitro assembly from isolated subunits or by in vivo assembly upon overexpression of a single mutant subunit. Both approaches can fail if the mutant subunit is toxic or incorrectly folded. Here we describe an alternative strategy, co-overexpression and in vivo assembly of RNA polymerase subunits, and apply this method to characterize the role of sequence insertions present in the Escherichia coli enzyme. We find that co-overexpression of its subunits allows assembly of an RNA polymerase lacking a 188-amino acid insertion in the β′ subunit. Based on experiments with this and other mutant E. coli enzymes with precisely excised sequence insertions, we report that the β′ sequence insertion and, to a lesser extent, an N-terminal β sequence insertion confer characteristic stability to the open initiation complex, frequency of abortive initiation, and pausing during transcript elongation relative to RNA polymerases, such as that from Bacillus subtilis, that lack the sequence insertions.
UR - http://www.scopus.com/inward/record.url?scp=0038823636&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038823636&partnerID=8YFLogxK
U2 - 10.1074/jbc.M211214200
DO - 10.1074/jbc.M211214200
M3 - Article
C2 - 12511572
AN - SCOPUS:0038823636
SN - 0021-9258
VL - 278
SP - 12344
EP - 12355
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 14
ER -