Coarse-grained spin density-functional theory: Infinite-volume limit via the hyperfinite

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Coarse-grained spin density functional theory (SDFT) is a version of SDFT which works with number/spin densities specified to a limited resolution - averages over cells of a regular spatial partition - and external potentials constant on the cells. This coarse-grained setting facilitates a rigorous investigation of the mathematical foundations which goes well beyond what is currently possible in the conventional formulation. Problems of existence, uniqueness, and regularity of representing potentials in the coarse-grained SDFT setting are here studied using techniques of (Robinsonian) nonstandard analysis. Every density which is nowhere spin-saturated is V-representable, and the set of representing potentials is the functional derivative, in an appropriate generalized sense, of the Lieb internal energy functional. Quasi-continuity and closure properties of the set-valued representing potentials map are also established. The extent of possible non-uniqueness is similar to that found in non-rigorous studies of the conventional theory, namely non-uniqueness can occur for states of collinear magnetization which are eigenstates of Sz.

Original languageEnglish (US)
Article number062104
JournalJournal of Mathematical Physics
Issue number6
StatePublished - Jun 3 2013

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics


Dive into the research topics of 'Coarse-grained spin density-functional theory: Infinite-volume limit via the hyperfinite'. Together they form a unique fingerprint.

Cite this