Abstract
Ferroelectric materials promise exceptional attributes including low power dissipation, fast operational speeds, enhanced endurance, and superior retention to revolutionize information technology. However, the practical application of ferroelectric-semiconductor memory devices has been significantly challenged by the incompatibility of traditional perovskite oxide ferroelectrics with metal-oxide-semiconductor technology. Recent discoveries of ferroelectricity in binary oxides such as Zn1-xMgxO and Hf1-xZrxO have been a focal point of research in ferroelectric information technology. This work investigates the ferroelectric properties of Zn1-xMgxO utilizing automated band excitation piezoresponse force microscopy. This findings reveal the coexistence of two ferroelectric subsystems within Zn1-xMgxO. A “fringing-ridge mechanism” of polarization switching is proposed that is characterized by initial lateral expansion of nucleation without significant propagation in depth, contradicting the conventional domain growth process observed in ferroelectrics. This unique polarization dynamics in Zn1-xMgxO suggests a new understanding of ferroelectric behavior, contributing to both the fundamental science of ferroelectrics and their application in information technology.
Original language | English (US) |
---|---|
Article number | 2404925 |
Journal | Advanced Materials |
Volume | 36 |
Issue number | 39 |
DOIs | |
State | Published - Sep 26 2024 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering