Cogeneration system simulation and control to meet simultaneous power, heating, and cooling demands

Francisco Sancho-Bastos, Horacio Perez-Blanco

    Research output: Contribution to journalArticlepeer-review

    7 Scopus citations

    Abstract

    Gas turbines are projected to meet increasing power demand throughout the world. Cogeneration plants hold the promise of increased efficiency at acceptable cost. In a general case, a cogen plant could be able to meet power heating and cooling demands. Yet those demands are normally uncoupled. Control and storage strategies need to be explored to ensure that each independent demand will be met continuously. A dynamic model of a mid-capacity system is developed, including gas and steam turbines, two heat recovery steam generators (HRSG) and an absorption-cooling machine. Controllers are designed using linear quadratic regulators (LQR) to control two turbines and a HRSG with some novelty. It is found that the power required could be generated exclusively with exhaust gases, without a duct burner in the high-pressure HRSG. The strategy calls for fuel and steam flow rate modulation for each turbine. The stability of the controlled system and its performance are studied and simulations for different demand cases are performed.

    Original languageEnglish (US)
    Pages (from-to)404-409
    Number of pages6
    JournalJournal of Engineering for Gas Turbines and Power
    Volume127
    Issue number2
    DOIs
    StatePublished - Apr 2005

    All Science Journal Classification (ASJC) codes

    • Nuclear Energy and Engineering
    • Fuel Technology
    • Aerospace Engineering
    • Energy Engineering and Power Technology
    • Mechanical Engineering

    Fingerprint

    Dive into the research topics of 'Cogeneration system simulation and control to meet simultaneous power, heating, and cooling demands'. Together they form a unique fingerprint.

    Cite this