Coherent quench dynamics in the one-dimensional Fermi-Hubbard model

Deepak Iyer, Rubem Mondaini, Sebastian Will, Marcos Rigol

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Recently, it has been shown that the momentum distribution of a metallic state of fermionic atoms in a lattice Fermi-Bose mixture exhibits coherent oscillations after a global quench that suppresses tunneling. The oscillation period is determined by the Fermi-Bose interaction strength. Here we show that similar coherent dynamics, but with a different functional form, occurs in the fermionic Hubbard model when we quench a noninteracting metallic state by introducing a Hubbard interaction and suppressing tunneling. The period is determined primarily by the interaction strength. Conversely, we show that one can accurately determine the Hubbard interaction strength from the oscillation period, taking into account corrections from any small residual tunneling present in the final Hamiltonian. Such residual tunneling shortens the period and damps the oscillations, the latter being visible in the Fermi-Bose experiment.

Original languageEnglish (US)
Article number031602
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Issue number3
StatePublished - Sep 22 2014

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Coherent quench dynamics in the one-dimensional Fermi-Hubbard model'. Together they form a unique fingerprint.

Cite this