TY - JOUR
T1 - Combinations of slow-translating codon clusters can increase mRNA half-life in Saccharomyces cerevisiae
AU - Sharma, Ajeet K.
AU - Venezian, Johannes
AU - Shiber, Ayala
AU - Kramer, Günter
AU - Bukau, Bernd
AU - O’Brien, Edward P.
N1 - Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.
PY - 2021/12/21
Y1 - 2021/12/21
N2 - The presence of a single cluster of nonoptimal codons was found to decrease a transcript’s half-life through the interaction of the ribosome-associated quality control machinery with stalled ribosomes in Saccharomyces cerevisiae. The impact of multiple nonoptimal codon clusters on a transcript’s half-life, however, is unknown. Using a kinetic model, we predict that inserting a second nonoptimal cluster near the 50 end can lead to synergistic effects that increase a messenger RNA’s (mRNA’s) half-life in S. cerevisiae. Specifically, the 50 end cluster suppresses the formation of ribosome queues, reducing the interaction of ribosome-associated quality control factors with stalled ribosomes. We experimentally validate this prediction by introducing two nonoptimal clusters into three different genes and find that their mRNA half-life increases up to fourfold. The model also predicts that in the presence of two clusters, the cluster closest to the 50 end is the primary determinant of mRNA half-life. These results suggest the “translational ramp,” in which nonoptimal codons are located near the start codon and increase translational efficiency, may have the additional biological benefit of allowing downstream slow-codon clusters to be present without decreasing mRNA half-life. These results indicate that codon usage bias plays a more nuanced role in controlling cellular protein levels than previously thought.
AB - The presence of a single cluster of nonoptimal codons was found to decrease a transcript’s half-life through the interaction of the ribosome-associated quality control machinery with stalled ribosomes in Saccharomyces cerevisiae. The impact of multiple nonoptimal codon clusters on a transcript’s half-life, however, is unknown. Using a kinetic model, we predict that inserting a second nonoptimal cluster near the 50 end can lead to synergistic effects that increase a messenger RNA’s (mRNA’s) half-life in S. cerevisiae. Specifically, the 50 end cluster suppresses the formation of ribosome queues, reducing the interaction of ribosome-associated quality control factors with stalled ribosomes. We experimentally validate this prediction by introducing two nonoptimal clusters into three different genes and find that their mRNA half-life increases up to fourfold. The model also predicts that in the presence of two clusters, the cluster closest to the 50 end is the primary determinant of mRNA half-life. These results suggest the “translational ramp,” in which nonoptimal codons are located near the start codon and increase translational efficiency, may have the additional biological benefit of allowing downstream slow-codon clusters to be present without decreasing mRNA half-life. These results indicate that codon usage bias plays a more nuanced role in controlling cellular protein levels than previously thought.
UR - http://www.scopus.com/inward/record.url?scp=85122568981&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122568981&partnerID=8YFLogxK
U2 - 10.1073/pnas.2026362118
DO - 10.1073/pnas.2026362118
M3 - Article
C2 - 34911752
AN - SCOPUS:85122568981
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 51
M1 - e2026362118
ER -