Combinatorics and Statistical Mechanics of Integer Partitions

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We study the set of integer partitions as a probability space that generates distributions and, in the asymptotic limit, obeys thermodynamics. We view ordered integer partition as a configuration of cluster masses and associate them with the distribution of masses it contains. We organized the set of ordered partitions into a table that forms a microcanonical ensemble and whose columns form a set of canonical ensembles. We define a functional of the distribution (selection functional) that establishes a probability measure on the distributions of the ensemble, study the combinatorial properties of this space, define its partition functions, and show that, in the asymptotic limit, this space obeys thermodynamics. We construct a stochastic process that we call exchange reaction and used it to sample the mean distribution by Mote Carlo simulation. We demonstrated that, with appropriate choice of the selection functional, we can obtain any distribution as the equilibrium distribution of the ensemble.

Original languageEnglish (US)
Article number385
JournalEntropy
Volume25
Issue number2
DOIs
StatePublished - Feb 2023

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Electrical and Electronic Engineering
  • General Physics and Astronomy
  • Mathematical Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Combinatorics and Statistical Mechanics of Integer Partitions'. Together they form a unique fingerprint.

Cite this