Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube

The IceCube Collaboration

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

The field of deep learning has become increasingly important for particle physics experiments, yielding a multitude of advances, predominantly in event classification and reconstruction tasks. Many of these applications have been adopted from other domains. However, data in the field of physics are unique in the context of machine learning, insofar as their generation process and the laws and symmetries they abide by are usually well understood. Most commonly used deep learning architectures fail at utilizing this available information. In contrast, more traditional likelihood-based methods are capable of exploiting domain knowledge, but they are often limited by computational complexity. In this contribution, a hybrid approach is presented that utilizes generative neural networks to approximate the likelihood, which may then be used in a traditional maximum-likelihood setting. Domain knowledge, such as invariances and detector characteristics, can easily be incorporated in this approach. The hybrid approach is illustrated by the example of event reconstruction in IceCube.

Original languageEnglish (US)
Article number1065
JournalProceedings of Science
Volume395
StatePublished - Mar 18 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: Jul 12 2021Jul 23 2021

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube'. Together they form a unique fingerprint.

Cite this