Abstract
We performed a microbial community analysis of biofilms inhabiting thermal (35 to 50°C) waters more than 60 m below the ground surface near Acquasanta Terme, Italy. The groundwater hosting the biofilms has 400 to 830 μM sulfide, <10 μM O2, pH of 6.3 to 6.7, and specific conductivity of 8,500 to 10,500 μS/cm. Based on the results of 16S rRNA gene cloning and fluorescent in situ hybridization (FISH), the biofilms have low species richness, and lithoautotrophic (or possibly mixotrophic) Gamma-and Epsilonproteobacteria are the principle biofilm architects. Deltaproteobacteria sequences retrieved from the biofilms have <90% 16S rRNA similarity to their closest relatives in public databases and may represent novel sulfate-reducing bacteria. The Acquasanta biofilms share few species in common with Frasassi cave biofilms (13°C, 80 km distant) but have a similar community structure, with representatives in the same major clades. The ecological success of Sulfurovumales-group Epsilonproteobacteria in the Acquasanta biofilms is consistent with previous observations of their dominance in sulfidic cave waters with turbulent water flow and high dissolved sulfide/oxygen ratios.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 5902-5910 |
| Number of pages | 9 |
| Journal | Applied and environmental microbiology |
| Volume | 76 |
| Issue number | 17 |
| DOIs | |
| State | Published - Sep 2010 |
All Science Journal Classification (ASJC) codes
- Biotechnology
- Food Science
- Ecology
- Applied Microbiology and Biotechnology