TY - JOUR
T1 - Compact multiplex PCR device for HIV-1 and HIV-2 viral load determination from finger-prick whole blood in resource-limited settings
AU - Liu, Tianyi
AU - Politza, Anthony J.
AU - Ahamed, Md Ahasan
AU - Kshirsagar, Aneesh
AU - Zhu, Yusheng
AU - Guan, Weihua
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/3/1
Y1 - 2025/3/1
N2 - The human immunodeficiency virus (HIV) remains a major global health concern for which accurate viral load monitoring is essential for the management of HIV infection. The advent of antiretroviral therapy (ART) has transformed once-fatal HIV disease into a manageable chronic condition that now makes the need for VL testing which aims to satisfy international suppression targets 95-95-95 al l the more essential. Therefore, considering the complexity and diversity of HIV infection, it is essential to develop rapid diagnostic technologies suitable for different clinical situations. Here, we report on a multiplexed PCR device developed for simple and efficient quantification of HIV-1 or HIV-2 viral loads using finger-pricked whole blood from rural decentralized settings. This device is comprised of a previously developed RNA extraction module combined with an optimized real-time PCR amplification system. Together, these combine to simultaneously detect and differentiate HIV-1 & 2; as well are adopting a testing control of RNase P allowing for full diagnostic analysis from one sample. Our device also includes an intuitive user interface and is completely autonomous so it can serve individuals in remote areas who are unfamiliar with the field of medical testing. They get the results in a very short time of around 70 min and hence save on testing times without leaving accuracy behind. The efficiency and effectiveness of the device were validated through the analysis of 30 clinical samples, yielding a sensitivity of 100% for both HIV-1 and HIV-2. The specificity was found to be 100% for HIV-1 and 90.91% for HIV-2, demonstrating high diagnostic accuracy. One of the most attractive things about this device is that it comes in comparison to all other counterparts. Given that you can run the assay for less than $10, it could be an economically viable way to use this as a broadscale test in regions where healthcare budgets don't allow others. Hence it is quite a useful device to aid HIV management in resource-limited settings, where conventional laboratory facilities are out of reach due its simplicity and affordability with rapid output. The point-of-care test is an effective, low-cost, high quality diagnostic tool-promoting rapid testing for HIV-inexpensively overcoming the barriers to efficient control of and care in resource-limited settings.
AB - The human immunodeficiency virus (HIV) remains a major global health concern for which accurate viral load monitoring is essential for the management of HIV infection. The advent of antiretroviral therapy (ART) has transformed once-fatal HIV disease into a manageable chronic condition that now makes the need for VL testing which aims to satisfy international suppression targets 95-95-95 al l the more essential. Therefore, considering the complexity and diversity of HIV infection, it is essential to develop rapid diagnostic technologies suitable for different clinical situations. Here, we report on a multiplexed PCR device developed for simple and efficient quantification of HIV-1 or HIV-2 viral loads using finger-pricked whole blood from rural decentralized settings. This device is comprised of a previously developed RNA extraction module combined with an optimized real-time PCR amplification system. Together, these combine to simultaneously detect and differentiate HIV-1 & 2; as well are adopting a testing control of RNase P allowing for full diagnostic analysis from one sample. Our device also includes an intuitive user interface and is completely autonomous so it can serve individuals in remote areas who are unfamiliar with the field of medical testing. They get the results in a very short time of around 70 min and hence save on testing times without leaving accuracy behind. The efficiency and effectiveness of the device were validated through the analysis of 30 clinical samples, yielding a sensitivity of 100% for both HIV-1 and HIV-2. The specificity was found to be 100% for HIV-1 and 90.91% for HIV-2, demonstrating high diagnostic accuracy. One of the most attractive things about this device is that it comes in comparison to all other counterparts. Given that you can run the assay for less than $10, it could be an economically viable way to use this as a broadscale test in regions where healthcare budgets don't allow others. Hence it is quite a useful device to aid HIV management in resource-limited settings, where conventional laboratory facilities are out of reach due its simplicity and affordability with rapid output. The point-of-care test is an effective, low-cost, high quality diagnostic tool-promoting rapid testing for HIV-inexpensively overcoming the barriers to efficient control of and care in resource-limited settings.
UR - http://www.scopus.com/inward/record.url?scp=85211064646&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85211064646&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2024.116997
DO - 10.1016/j.bios.2024.116997
M3 - Article
C2 - 39637742
AN - SCOPUS:85211064646
SN - 0956-5663
VL - 271
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 116997
ER -