TY - JOUR
T1 - Compact Point-of-Care Device for Self-Administered HIV Viral Load Tests from Whole Blood
AU - Liu, Tianyi
AU - Politza, Anthony J.
AU - Kshirsagar, Aneesh
AU - Zhu, Yusheng
AU - Guan, Weihua
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/12/22
Y1 - 2023/12/22
N2 - Human immunodeficiency virus (HIV) is a significant problem to consider as it can lead to acquired immune deficiency syndrome (AIDS). Fortunately, AIDS is manageable through antiretroviral therapy (ART). However, frequent viral load monitoring is needed to monitor the effectiveness of the therapy. The current reverse transcription-polymerase chain reaction (RT-PCR) viral load monitoring is highly effective, but is challenged by being resource-intensive and inaccessible, and its turnaround time does not meet demand. An unmet need exists for an affordable, rapid, and user-friendly point-of-care device that could revolutionize and ensure therapeutic effectiveness, particularly in resource-limited settings. In this work, we explored a point-of-care HIV viral load device to address this need. This device can perform streamlined plasma separation, viral RNA extraction, and real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) semiquantitative testing in an ultracompact device. We developed an absorption-based membrane plasma separation method suitable for finger-prick blood samples, achieving an efficiency of 80%. We also designed a syringe-based RNA extraction method for on-site plasma processing with a viral recovery efficiency of 86%. We created a portable device with a smartphone interface for real-time semiquantitative RT-LAMP, which is useful for monitoring viral load. The device uses lyophilized reagents, processed with our lyophilization method, which remain stable for 16 weeks. The device can accurately categorize viral load into low, medium, and high categories with 95% accuracy. We believe this point-of-care HIV self-test device, offering convenience and long-term storage, could aid patients in home-based ART treatment monitoring.
AB - Human immunodeficiency virus (HIV) is a significant problem to consider as it can lead to acquired immune deficiency syndrome (AIDS). Fortunately, AIDS is manageable through antiretroviral therapy (ART). However, frequent viral load monitoring is needed to monitor the effectiveness of the therapy. The current reverse transcription-polymerase chain reaction (RT-PCR) viral load monitoring is highly effective, but is challenged by being resource-intensive and inaccessible, and its turnaround time does not meet demand. An unmet need exists for an affordable, rapid, and user-friendly point-of-care device that could revolutionize and ensure therapeutic effectiveness, particularly in resource-limited settings. In this work, we explored a point-of-care HIV viral load device to address this need. This device can perform streamlined plasma separation, viral RNA extraction, and real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) semiquantitative testing in an ultracompact device. We developed an absorption-based membrane plasma separation method suitable for finger-prick blood samples, achieving an efficiency of 80%. We also designed a syringe-based RNA extraction method for on-site plasma processing with a viral recovery efficiency of 86%. We created a portable device with a smartphone interface for real-time semiquantitative RT-LAMP, which is useful for monitoring viral load. The device uses lyophilized reagents, processed with our lyophilization method, which remain stable for 16 weeks. The device can accurately categorize viral load into low, medium, and high categories with 95% accuracy. We believe this point-of-care HIV self-test device, offering convenience and long-term storage, could aid patients in home-based ART treatment monitoring.
UR - http://www.scopus.com/inward/record.url?scp=85179831756&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85179831756&partnerID=8YFLogxK
U2 - 10.1021/acssensors.3c01819
DO - 10.1021/acssensors.3c01819
M3 - Article
C2 - 38011515
AN - SCOPUS:85179831756
SN - 2379-3694
VL - 8
SP - 4716
EP - 4727
JO - ACS Sensors
JF - ACS Sensors
IS - 12
ER -