Comparative 6+studies of environmentally persistent free radicals on nano-sized coal dusts

Sikandar Azam, Vasily Kurashov, John H. Golbeck, Sekhar Bhattacharyya, Siyang Zheng, Shimin Liu

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Coal dust is the major hazardous pollutant in the coal mining environment. Recently environmentally persistent free radicals (EPFRs) were identified as one of the key characteristics which could impart toxicity to the particulates released into the environment. The present study used Electron Paramagnetic Resonance (EPR) spectroscopy to analyze the characteristics of EPFRs present in different types of nano-size coal dust. Further, it analyzed the stability of the free radicals in the respirable nano-size coal dust and compared their characteristics in terms of EPR parameters (spin counts and g-values). It was found that free radicals in coal are remarkably stable (can remain intact for several months). Also, Most of the EPFRs in the coal dust particles are either oxygenated carbon centered or a mixture of carbon and oxygen-centered free radicals. EPFRs concentration in the coal dust was found to be proportional to the carbon content of coal. The characteristic g-values were found to be inversely related to the carbon content of coal dust. The spin concentrations in the lignite coal dust were between 3.819 and 7.089 μmol/g, whereas the g-values ranged from 2.00352 to 2.00363. The spin concentrations in the bituminous coal dust were between 11.614 and 25.562 μmol/g, whereas the g-values ranged from 2.00295 to 2.00319. The characteristics of EPFRs present in coal dust identified by this study are similar to the EPFRs, which were found in other environmental pollutants such as combustion-generated particulates, PM2.5, indoor dust, wildfires, biochar, haze etc., in some of the previous studies. Considering the toxicity analysis of environmental particulates containing EPFRs similar to those identified in the present study, it can be confidently hypothesized that the EPFRs in the coal dust might play a major role in modulating the coal dust toxicity. Hence, it is recommended that future studies should analyze the role of EPFR-loaded coal dust in mediating the inhalation toxicity of coal dust.

Original languageEnglish (US)
Article number163163
JournalScience of the Total Environment
StatePublished - Jun 20 2023

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Cite this