TY - JOUR
T1 - Comparative characterization of reticular and duodenal digesta and possibilities of estimating microbial outflow from the rumen based on reticular sampling in dairy cows
AU - Hristov, A. N.
PY - 2007/10
Y1 - 2007/10
N2 - The objective of this experiment was to investigate the possibility of estimating the outflow of nutrients and microbial protein from the rumen based on sampling reticular contents as an alternative to duodenal sampling. Microbial protein flow estimates were also compared with a third method based on sampling of ruminal contents. Reticular and duodenal digesta and ruminal contents were recovered from 4 cows used in a 4 x 4 Latin square design experiment, in which the ruminal effects of 4 exogenous enzyme preparations were studied. Large and small particulate and fluid markers were used to estimate digesta flow in a triple-marker model; 15N was used as a microbial marker. Reticular and duodenal digesta were segregated into small and large particles (SP and LP, respectively) and a fluid phase, and ruminal digesta was segregated into particulate and fluid phases. Compared with digesta recovered at the duodenum, reticular digesta had lower OM and greater NDF contents. The proportion of microbial N was notably greater in the fluid phase of reticular digesta. Ruminal outflow of DM and OM was greater (by 17 and 28%) and that of NDF was lower (by 14%) when estimated from duodenal compared with reticular samples. There was no difference in the estimated flow of starch and nonammonia and microbial N between the reticular and duodenal techniques. Microbial N flow estimated based on ruminal sampling was similar to those based on duodenal and reticular sampling. The ruminal method, however, grossly overestimated flow of DM, OM, and NDF. This study supports the concept that microbial protein outflow from the rumen can be measured based on sampling of ruminal or reticular digesta. The reticular sampling technique can also provide reliable estimates for ruminal digestibility of OM, N, and fiber fractions. These findings need to be confirmed in experiments with basal diets varying in structure and forage-to-concentrate ratios.
AB - The objective of this experiment was to investigate the possibility of estimating the outflow of nutrients and microbial protein from the rumen based on sampling reticular contents as an alternative to duodenal sampling. Microbial protein flow estimates were also compared with a third method based on sampling of ruminal contents. Reticular and duodenal digesta and ruminal contents were recovered from 4 cows used in a 4 x 4 Latin square design experiment, in which the ruminal effects of 4 exogenous enzyme preparations were studied. Large and small particulate and fluid markers were used to estimate digesta flow in a triple-marker model; 15N was used as a microbial marker. Reticular and duodenal digesta were segregated into small and large particles (SP and LP, respectively) and a fluid phase, and ruminal digesta was segregated into particulate and fluid phases. Compared with digesta recovered at the duodenum, reticular digesta had lower OM and greater NDF contents. The proportion of microbial N was notably greater in the fluid phase of reticular digesta. Ruminal outflow of DM and OM was greater (by 17 and 28%) and that of NDF was lower (by 14%) when estimated from duodenal compared with reticular samples. There was no difference in the estimated flow of starch and nonammonia and microbial N between the reticular and duodenal techniques. Microbial N flow estimated based on ruminal sampling was similar to those based on duodenal and reticular sampling. The ruminal method, however, grossly overestimated flow of DM, OM, and NDF. This study supports the concept that microbial protein outflow from the rumen can be measured based on sampling of ruminal or reticular digesta. The reticular sampling technique can also provide reliable estimates for ruminal digestibility of OM, N, and fiber fractions. These findings need to be confirmed in experiments with basal diets varying in structure and forage-to-concentrate ratios.
UR - http://www.scopus.com/inward/record.url?scp=35348985039&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35348985039&partnerID=8YFLogxK
U2 - 10.2527/jas.2006-852
DO - 10.2527/jas.2006-852
M3 - Article
C2 - 17591704
AN - SCOPUS:35348985039
SN - 0021-8812
VL - 85
SP - 2606
EP - 2613
JO - Journal of animal science
JF - Journal of animal science
IS - 10
ER -