TY - JOUR
T1 - Comparative evaluation of 11 in silico models for the prediction of small molecule mutagenicity
T2 - role of steric hindrance and electron-withdrawing groups
AU - Ford, Kevin A.
AU - Ryslik, Gregory
AU - Chan, Bryan K.
AU - Lewin-Koh, Sock Cheng
AU - Almeida, Davi
AU - Stokes, Michael
AU - Gomez, Stephen R.
N1 - Publisher Copyright:
© 2016 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2017/1/2
Y1 - 2017/1/2
N2 - The goal of this investigation was to perform a comparative analysis on how accurately 11 routinely-used in silico programs correctly predicted the mutagenicity of test compounds that contained either bulky or electron-withdrawing substituents. To our knowledge this is the first study of its kind in the literature. Such substituents are common in many pharmaceutical agents so there is a significant need for reliable in silico programs to predict precisely whether they truly pose a risk for mutagenicity. The predictions from each program were compared to experimental data derived from the Ames II test, a rapid reverse mutagenicity assay with a high degree of agreement with the traditional Ames assay. Eleven in silico programs were evaluated and compared: Derek for Windows, Derek Nexus, Leadscope Model Applier (LSMA), LSMA featuring the in vitro microbial Escherichia coli–Salmonella typhimurium TA102 A-T Suite (LSMA+), TOPKAT, CAESAR, TEST, ChemSilico (±S9 suites), MC4PC and a novel DNA docking model. The presence of bulky or electron-withdrawing functional groups in the vicinity of a mutagenic toxicophore in the test compounds clearly affected the ability of each in silico model to predict non-mutagenicity correctly. This was because of an over reliance on the part of the programs to provide mutagenicity alerts when a particular toxicophore is present irrespective of the structural environment surrounding the toxicophore. From this investigation it can be concluded that these models provide a high degree of specificity (ranging from 71% to 100%) and are generally conservative in their predictions in terms of sensitivity (ranging from 5% t o 78%). These values are in general agreement with most other comparative studies in the literature. Interestingly, the DNA docking model was the most sensitive model evaluated, suggesting a potentially useful new mode of screening for mutagens. Another important finding was that the combination of a quantitative structure–activity relationship and an expert rules system appeared to offer little advantage in terms of sensitivity, despite of the requirement for such a screening paradigm under the ICH M7 regulatory guideline.
AB - The goal of this investigation was to perform a comparative analysis on how accurately 11 routinely-used in silico programs correctly predicted the mutagenicity of test compounds that contained either bulky or electron-withdrawing substituents. To our knowledge this is the first study of its kind in the literature. Such substituents are common in many pharmaceutical agents so there is a significant need for reliable in silico programs to predict precisely whether they truly pose a risk for mutagenicity. The predictions from each program were compared to experimental data derived from the Ames II test, a rapid reverse mutagenicity assay with a high degree of agreement with the traditional Ames assay. Eleven in silico programs were evaluated and compared: Derek for Windows, Derek Nexus, Leadscope Model Applier (LSMA), LSMA featuring the in vitro microbial Escherichia coli–Salmonella typhimurium TA102 A-T Suite (LSMA+), TOPKAT, CAESAR, TEST, ChemSilico (±S9 suites), MC4PC and a novel DNA docking model. The presence of bulky or electron-withdrawing functional groups in the vicinity of a mutagenic toxicophore in the test compounds clearly affected the ability of each in silico model to predict non-mutagenicity correctly. This was because of an over reliance on the part of the programs to provide mutagenicity alerts when a particular toxicophore is present irrespective of the structural environment surrounding the toxicophore. From this investigation it can be concluded that these models provide a high degree of specificity (ranging from 71% to 100%) and are generally conservative in their predictions in terms of sensitivity (ranging from 5% t o 78%). These values are in general agreement with most other comparative studies in the literature. Interestingly, the DNA docking model was the most sensitive model evaluated, suggesting a potentially useful new mode of screening for mutagens. Another important finding was that the combination of a quantitative structure–activity relationship and an expert rules system appeared to offer little advantage in terms of sensitivity, despite of the requirement for such a screening paradigm under the ICH M7 regulatory guideline.
UR - http://www.scopus.com/inward/record.url?scp=84994157838&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84994157838&partnerID=8YFLogxK
U2 - 10.1080/15376516.2016.1174761
DO - 10.1080/15376516.2016.1174761
M3 - Article
C2 - 27813437
AN - SCOPUS:84994157838
SN - 1537-6516
VL - 27
SP - 24
EP - 35
JO - Toxicology Mechanisms and Methods
JF - Toxicology Mechanisms and Methods
IS - 1
ER -