TY - JOUR
T1 - Comparative Genomic Analysis of Salmonella enterica Serovar Typhimurium Isolates from Passerines Reveals Two Lineages Circulating in Europe, New Zealand, and the United States
AU - Fu, Yezhi
AU - M'ikanatha, Nkuchia M.
AU - Dudley, Edward G.
N1 - Publisher Copyright:
© 2022 American Society for Microbiology.
PY - 2022/5
Y1 - 2022/5
N2 - Salmonella enterica serovar Typhimurium strains from passerines have caused wild bird deaths and human salmonellosis outbreaks in Europe, Oceania, and North America. Here, we performed comparative genomic analysis to explore the emergence, genetic relationship, and evolution of geographically dispersed passerine isolates. We found that passerine isolates from Europe and the United States clustered to form two lineages (EU and US passerine lineages), which were distinct from major S. Typhimurium lineages circulating in other diverse hosts (e.g., humans, cattle, pigs, chickens, and other avian hosts, such as pigeons and ducks). Further, passerine isolates from New Zealand clustered to form a sublineage (NZ passerine lineage) of the US passerine lineage. We inferred that the passerine isolates mutated at a rate of 3.2 ×1027 substitutions/site/year, and the US, EU, and NZ passerine lineages emerged in approximately 1952, 1970, and 1996, respectively. Isolates from the three lineages presented genetic similarity, such as lack of antimicrobial resistance genes and accumulation of the same virulence pseudogenes. In addition, genetic diversity due to microevolution existed in the three passerine lineages. Specifically, pseudogenization in the type 1 fimbrial gene fimC (deletion of G at position 87) was detected only in the US and NZ passerine isolates, while single-base deletions in type 3 secretion system effector genes (i.e., gogB, sseJ, and sseK2) cooccurred solely in the EU passerine isolates. These findings provide insights into the evolution, host adaptation, and epidemiology of S. Typhimurium in passerines.
AB - Salmonella enterica serovar Typhimurium strains from passerines have caused wild bird deaths and human salmonellosis outbreaks in Europe, Oceania, and North America. Here, we performed comparative genomic analysis to explore the emergence, genetic relationship, and evolution of geographically dispersed passerine isolates. We found that passerine isolates from Europe and the United States clustered to form two lineages (EU and US passerine lineages), which were distinct from major S. Typhimurium lineages circulating in other diverse hosts (e.g., humans, cattle, pigs, chickens, and other avian hosts, such as pigeons and ducks). Further, passerine isolates from New Zealand clustered to form a sublineage (NZ passerine lineage) of the US passerine lineage. We inferred that the passerine isolates mutated at a rate of 3.2 ×1027 substitutions/site/year, and the US, EU, and NZ passerine lineages emerged in approximately 1952, 1970, and 1996, respectively. Isolates from the three lineages presented genetic similarity, such as lack of antimicrobial resistance genes and accumulation of the same virulence pseudogenes. In addition, genetic diversity due to microevolution existed in the three passerine lineages. Specifically, pseudogenization in the type 1 fimbrial gene fimC (deletion of G at position 87) was detected only in the US and NZ passerine isolates, while single-base deletions in type 3 secretion system effector genes (i.e., gogB, sseJ, and sseK2) cooccurred solely in the EU passerine isolates. These findings provide insights into the evolution, host adaptation, and epidemiology of S. Typhimurium in passerines.
UR - http://www.scopus.com/inward/record.url?scp=85129993428&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85129993428&partnerID=8YFLogxK
U2 - 10.1128/aem.00205-22
DO - 10.1128/aem.00205-22
M3 - Article
C2 - 35435718
AN - SCOPUS:85129993428
SN - 0099-2240
VL - 88
JO - Applied and environmental microbiology
JF - Applied and environmental microbiology
IS - 9
M1 - e00205-22
ER -