TY - JOUR
T1 - Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies
AU - Zahn, Laura M.
AU - Ma, Xuan
AU - Altman, Naomi S.
AU - Zhang, Qing
AU - Wall, P. Kerr
AU - Tian, Donglan
AU - Gibas, Cynthia J.
AU - Gharaibeh, Raad
AU - Leebens-Mack, James H.
AU - dePamphilis, Claude W.
AU - Ma, Hong
N1 - Funding Information:
We would like to acknowledge Philip Larkin and Toni Kutchin for providing EST data included in the microarray designs, and thank Xiaofan Zhou and Dihong Lu for comments on the manuscript. This work was supported by the Floral Genome Project (NSF NSF Plant Genome Award DBI-0115684) and Ancestral Angiosperm Genome Project (NSF Plant Genome Comparative Sequencing DEB-0638595) to CWD, HM, and JLM. RG was supported by an NIH grant (R01-GM072619) and HM was also supported by funds from Fudan University.
PY - 2010/10/15
Y1 - 2010/10/15
N2 - Background: Molecular genetic studies of floral development have concentrated on several core eudicots and grasses (monocots), which have canalized floral forms. Basal eudicots possess a wider range of floral morphologies than the core eudicots and grasses and can serve as an evolutionary link between core eudicots and monocots, and provide a reference for studies of other basal angiosperms. Recent advances in genomics have enabled researchers to profile gene activities during floral development, primarily in the eudicot Arabidopsis thaliana and the monocots rice and maize. However, our understanding of floral developmental processes among the basal eudicots remains limited.Results: Using a recently generated expressed sequence tag (EST) set, we have designed an oligonucleotide microarray for the basal eudicot Eschscholzia californica (California poppy). We performed microarray experiments with an interwoven-loop design in order to characterize the E. californica floral transcriptome and to identify differentially expressed genes in flower buds with pre-meiotic and meiotic cells, four floral organs at pre-anthesis stages (sepals, petals, stamens and carpels), developing fruits, and leaves.Conclusions: Our results provide a foundation for comparative gene expression studies between eudicots and basal angiosperms. We identified whorl-specific gene expression patterns in E. californica and examined the floral expression of several gene families. Interestingly, most E. californica homologs of Arabidopsis genes important for flower development, except for genes encoding MADS-box transcription factors, show different expression patterns between the two species. Our comparative transcriptomics study highlights the unique evolutionary position of E. californica compared with basal angiosperms and core eudicots.
AB - Background: Molecular genetic studies of floral development have concentrated on several core eudicots and grasses (monocots), which have canalized floral forms. Basal eudicots possess a wider range of floral morphologies than the core eudicots and grasses and can serve as an evolutionary link between core eudicots and monocots, and provide a reference for studies of other basal angiosperms. Recent advances in genomics have enabled researchers to profile gene activities during floral development, primarily in the eudicot Arabidopsis thaliana and the monocots rice and maize. However, our understanding of floral developmental processes among the basal eudicots remains limited.Results: Using a recently generated expressed sequence tag (EST) set, we have designed an oligonucleotide microarray for the basal eudicot Eschscholzia californica (California poppy). We performed microarray experiments with an interwoven-loop design in order to characterize the E. californica floral transcriptome and to identify differentially expressed genes in flower buds with pre-meiotic and meiotic cells, four floral organs at pre-anthesis stages (sepals, petals, stamens and carpels), developing fruits, and leaves.Conclusions: Our results provide a foundation for comparative gene expression studies between eudicots and basal angiosperms. We identified whorl-specific gene expression patterns in E. californica and examined the floral expression of several gene families. Interestingly, most E. californica homologs of Arabidopsis genes important for flower development, except for genes encoding MADS-box transcription factors, show different expression patterns between the two species. Our comparative transcriptomics study highlights the unique evolutionary position of E. californica compared with basal angiosperms and core eudicots.
UR - http://www.scopus.com/inward/record.url?scp=77957892200&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957892200&partnerID=8YFLogxK
U2 - 10.1186/gb-2010-11-10-r101
DO - 10.1186/gb-2010-11-10-r101
M3 - Article
C2 - 20950453
AN - SCOPUS:77957892200
SN - 1474-7596
VL - 11
JO - Genome biology
JF - Genome biology
IS - 10
M1 - R101
ER -