TY - GEN
T1 - Comparing attribute- And form-based machine learning techniques for component prediction
AU - Williams, Glen
AU - Puentes, Lucas
AU - Nelson, Jacob
AU - Menold, Jessica
AU - Tucker, Conrad
AU - McComb, Christopher
N1 - Publisher Copyright:
Copyright © 2020 ASME.
PY - 2020
Y1 - 2020
N2 - Online data repositories provide designers and engineers with a convenient source of data. Over time, the wealth and type of readily-available data within online repositories has greatly expanded. This data increase permits new uses for machine learning approaches which rely on large, high-dimensional datasets. However, a comparison of the efficacies of attributebased data, which lends itself well to traditional machine learning algorithms, and form-based data, which lends itself to deep machine learning algorithms, has not fully been established. This paper presents one such comparison for an exemplar dataset. As the efficacy of different machine learning approaches may be dependent on the specific application, this method is intended to lay the groundwork for future studies that produce more extensive comparisons. Specifically, this work makes use of a manufactured gear dataset for sale price prediction. Two traditional machine learning algorithms, M5Rules and SMOreg, are selected due to their applicability to the gear attribute-based data. These algorithms are compared to a neural network model that is trained on a voxelized version of the gears' 3D models, defined in this work as form-based data. Results show that both data types provide comparable predictive accuracy.
AB - Online data repositories provide designers and engineers with a convenient source of data. Over time, the wealth and type of readily-available data within online repositories has greatly expanded. This data increase permits new uses for machine learning approaches which rely on large, high-dimensional datasets. However, a comparison of the efficacies of attributebased data, which lends itself well to traditional machine learning algorithms, and form-based data, which lends itself to deep machine learning algorithms, has not fully been established. This paper presents one such comparison for an exemplar dataset. As the efficacy of different machine learning approaches may be dependent on the specific application, this method is intended to lay the groundwork for future studies that produce more extensive comparisons. Specifically, this work makes use of a manufactured gear dataset for sale price prediction. Two traditional machine learning algorithms, M5Rules and SMOreg, are selected due to their applicability to the gear attribute-based data. These algorithms are compared to a neural network model that is trained on a voxelized version of the gears' 3D models, defined in this work as form-based data. Results show that both data types provide comparable predictive accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85096287997&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096287997&partnerID=8YFLogxK
U2 - 10.1115/DETC2020-22256
DO - 10.1115/DETC2020-22256
M3 - Conference contribution
AN - SCOPUS:85096287997
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 46th Design Automation Conference (DAC)
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020
Y2 - 17 August 2020 through 19 August 2020
ER -