TY - JOUR
T1 - Comparing Satellite- and Ground-Based Observations of Cloud Occurrence Over High Southern Latitudes
AU - McErlich, Cameron
AU - McDonald, Adrian
AU - Schuddeboom, Alex
AU - Silber, Israel
N1 - Publisher Copyright:
© 2021. American Geophysical Union. All Rights Reserved.
PY - 2021/3/27
Y1 - 2021/3/27
N2 - The 2B-CLDCLASS-LIDAR R05 (2BCL5) and the raDAR/liDAR (DARDAR) satellite retrievals of cloud occurrence are compared as a function of altitude and latitude. The largest disparities are observed at low altitudes over high southern latitudes. These data sets are cross referenced to ground-based measurements from the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) campaign at McMurdo Station, Antarctica. Compared with AWARE observations, both 2BCL5 and DARDAR underestimate cloud occurrence below 1.5 km, with 2BCL5 and DARDAR distinguishing roughly one third of cloud occurrences observed by AWARE at 0.5 km. While DARDAR identifies greater cloud occurrences than 2BCL5 below 1.5 km, cloud occurrence values for the two data sets have similar differences relative to ground-based measurements. Therefore, the DARDAR retrievals of greater cloud occurrence at low altitudes are likely due to a larger quantity of false positives associated with radar ground clutter or attenuated lidar retrievals. DARDAR cloud occurrences match better with AWARE than 2BCL5 above 5 km. However, the likely underestimation of ground-based measurements at higher altitudes suggests DARDAR may underestimate high level cloud occurrence. Finally, both data sets indicate the presence of liquid containing clouds at temperatures within the homogeneous freezing regime, despite the fact that the ECMWF-AUX data set implemented in their processing clearly indicates temperatures below −38°C. Using AWARE radiosonde (ECMWF-AUX) temperature data, we find that 2BCL5 detects 13.3% (13.8%) of mixed phase clouds below −38°C, while DARDAR detects 5.7% (6.6%) of mixed phase and 1.1% (1.3%) of liquid phase clouds below −38°C.
AB - The 2B-CLDCLASS-LIDAR R05 (2BCL5) and the raDAR/liDAR (DARDAR) satellite retrievals of cloud occurrence are compared as a function of altitude and latitude. The largest disparities are observed at low altitudes over high southern latitudes. These data sets are cross referenced to ground-based measurements from the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) campaign at McMurdo Station, Antarctica. Compared with AWARE observations, both 2BCL5 and DARDAR underestimate cloud occurrence below 1.5 km, with 2BCL5 and DARDAR distinguishing roughly one third of cloud occurrences observed by AWARE at 0.5 km. While DARDAR identifies greater cloud occurrences than 2BCL5 below 1.5 km, cloud occurrence values for the two data sets have similar differences relative to ground-based measurements. Therefore, the DARDAR retrievals of greater cloud occurrence at low altitudes are likely due to a larger quantity of false positives associated with radar ground clutter or attenuated lidar retrievals. DARDAR cloud occurrences match better with AWARE than 2BCL5 above 5 km. However, the likely underestimation of ground-based measurements at higher altitudes suggests DARDAR may underestimate high level cloud occurrence. Finally, both data sets indicate the presence of liquid containing clouds at temperatures within the homogeneous freezing regime, despite the fact that the ECMWF-AUX data set implemented in their processing clearly indicates temperatures below −38°C. Using AWARE radiosonde (ECMWF-AUX) temperature data, we find that 2BCL5 detects 13.3% (13.8%) of mixed phase clouds below −38°C, while DARDAR detects 5.7% (6.6%) of mixed phase and 1.1% (1.3%) of liquid phase clouds below −38°C.
UR - http://www.scopus.com/inward/record.url?scp=85102992079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102992079&partnerID=8YFLogxK
U2 - 10.1029/2020JD033607
DO - 10.1029/2020JD033607
M3 - Article
AN - SCOPUS:85102992079
SN - 2169-897X
VL - 126
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 6
M1 - e2020JD033607
ER -