TY - GEN
T1 - Comparison of cyclic oxidation performance of APS and EBPVD processed TBCS on IN738 with a bond coat of NiCoCrAlY powder with 0.25% Hf
AU - Akwaboa, Stephen
AU - Silva, Monica B.
AU - Mensah, Patrick
AU - Diwan, Ravinder
AU - Wolfe, Douglas E.
AU - Guo, Shengmin
N1 - Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2010
Y1 - 2010
N2 - Thermal barrier coatings (TBCs) are used in gas turbine engines to achieve higher turbine inlet temperatures (TITs), improve turbine operating temperatures, reduce fuel consumption, increase components lives and thus lead to better turbine efficiency. Yttria-stabilized zirconia (YSZ), is an ideal candidate for TBCs as it has good thermal shock resistance, high thermal stability, low density, and low thermal conductivity. Traditionally, there are two main methods of fabricating TBCs: air plasma spray (APS) TBCs and electron beam physical vapor deposition (EBPVD) TBCs. It is the objective of this paper to study the effects of APS TBC microstructures in comparison with EBPVD TBCs deposited on NiCoCrAlYHf bond coated In738 substrate material for applications in advanced gas turbines. The bond coat NiCoCrAlY contains 0.25w% Hf which is expected to improve the reliability of standard (STD) and vertically cracked (VC) APS TBC material. TBC top coatings of 300 μrn and 600 μm thickness for both standard and VC APS TBC and 300 μn EBPVD TBC were further investigated to determine the effect of coating thickness of TBC performance. Selected test specimens were evaluated for dry and wet thermal cyclic oxidation performance. Thermal property determination of select samples was achieved using a laser flash system that measures the thermal diffusivity and specific heat capacity from which the thermal conductivity is calculated. Lastly, select YSZAl2O3 composite structures were analyzed in addition to APS and EBPVD TBC microstructure, porosity, and thermal conductivity determination using a variety of analytical techniques. A laser flash system was used to measure the thermal 'diffusivity for all the samples. A POREMASTER 33 system was used to measure the porosity of the APS and EBPVD samples.
AB - Thermal barrier coatings (TBCs) are used in gas turbine engines to achieve higher turbine inlet temperatures (TITs), improve turbine operating temperatures, reduce fuel consumption, increase components lives and thus lead to better turbine efficiency. Yttria-stabilized zirconia (YSZ), is an ideal candidate for TBCs as it has good thermal shock resistance, high thermal stability, low density, and low thermal conductivity. Traditionally, there are two main methods of fabricating TBCs: air plasma spray (APS) TBCs and electron beam physical vapor deposition (EBPVD) TBCs. It is the objective of this paper to study the effects of APS TBC microstructures in comparison with EBPVD TBCs deposited on NiCoCrAlYHf bond coated In738 substrate material for applications in advanced gas turbines. The bond coat NiCoCrAlY contains 0.25w% Hf which is expected to improve the reliability of standard (STD) and vertically cracked (VC) APS TBC material. TBC top coatings of 300 μrn and 600 μm thickness for both standard and VC APS TBC and 300 μn EBPVD TBC were further investigated to determine the effect of coating thickness of TBC performance. Selected test specimens were evaluated for dry and wet thermal cyclic oxidation performance. Thermal property determination of select samples was achieved using a laser flash system that measures the thermal diffusivity and specific heat capacity from which the thermal conductivity is calculated. Lastly, select YSZAl2O3 composite structures were analyzed in addition to APS and EBPVD TBC microstructure, porosity, and thermal conductivity determination using a variety of analytical techniques. A laser flash system was used to measure the thermal 'diffusivity for all the samples. A POREMASTER 33 system was used to measure the porosity of the APS and EBPVD samples.
UR - http://www.scopus.com/inward/record.url?scp=77954262166&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954262166&partnerID=8YFLogxK
U2 - 10.1115/IMECE2009-11901
DO - 10.1115/IMECE2009-11901
M3 - Conference contribution
AN - SCOPUS:77954262166
SN - 9780791843826
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings
SP - 2063
EP - 2068
BT - Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009
Y2 - 13 November 2009 through 19 November 2009
ER -