Competition between Heterogeneous Nucleation and Flow-Induced Crystallization of Polyamide 66 and Its Carbon Nanotube Composites

Anne M. Gohn, Xiaoshi Zhang, Alexander McHale, René Androsch, Alicyn M. Rhoades

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Both heterogeneous nucleation and flow-induced entropy reduction are the two well-known factors that accelerate polymer crystallization. However, the interplay of nucleation and flow-induced acceleration is still poorly understood. This work investigates the nucleating effect of carbon nanotubes (CNT) on both the quiescent and flow-induced crystallization kinetics of polyamide 66 (PA 66). The quiescent crystallization study indicates that CNT acts as a powerful nucleant, as suggested by the fact that the critical cooling rate to bypass crystallization and create the amorphous glassy state changes from 1000 K s−1 in PA 66 neat resin to a rate faster than 4000 K s−1 in the PA 66 nanocomposites. The flow-induced crystallization study indicates PA 66 onset crystallization time and morphology depend on the shear work introduced by rotational rheometry. A combined acceleration effect from CNT nucleants and flow-induced crystallization (FIC) persists when the CNT loading is under the saturation limit. However, if CNT loading meets the saturation limit, specific shear work shows no impact on the crystallization time, providing evidence that the role of the FIC acceleration effect no longer exists when nucleant acceleration dominates the crystallization of PA 66.

Original languageEnglish (US)
Article number2200418
JournalMacromolecular Rapid Communications
Volume43
Issue number24
DOIs
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Competition between Heterogeneous Nucleation and Flow-Induced Crystallization of Polyamide 66 and Its Carbon Nanotube Composites'. Together they form a unique fingerprint.

Cite this