TY - JOUR
T1 - Complexity in pH-Dependent Ribozyme Kinetics
T2 - Dark pKa Shifts and Wavy Rate-pH Profiles
AU - Frankel, Erica A.
AU - Bevilacqua, Philip C.
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2018/2/6
Y1 - 2018/2/6
N2 - Charged bases occur in RNA enzymes, or ribozymes, where they play key roles in catalysis. Cationic bases donate protons and perform electrostatic catalysis, while anionic bases accept protons. We previously published simulations of rate-pH profiles for ribozymes in terms of species plots for the general acid and general base that have been useful for understanding how ribozymes respond to pH. In that study, we did not consider interaction between the general acid and general base or interaction with other species on the RNA. Since that report, diverse small ribozyme classes have been discovered, many of which have charged nucleobases or metal ions in the active site that can either directly interact and participate in catalysis or indirectly interact as "influencers". Herein, we simulate experimental rate-pH profiles in terms of species plots in which reverse protonated charged nucleobases interact. These analyses uncover two surprising features of pH-dependent enzyme kinetics. (1) Cooperativity between the general acid and general base enhances population of the functional forms of a ribozyme and manifests itself as hidden or "dark" pKa shifts, real pKa shifts that accelerate the reaction but are not readily observed by standard experimental approaches, and (2) influencers favorably shift the pKas of proton-transferring nucleobases and manifest themselves as "wavy" rate-pH profiles. We identify parallels with the protein enzyme literature, including reverse protonation and wavelike behavior, while pointing out that RNA is more prone to reverse protonation. The complexities uncovered, which arise from simple pairwise interactions, should aid deconvolution of complex rate-pH profiles for RNA and protein enzymes and suggest veiled catalytic devices for promoting catalysis that can be tested by experiment and calculation.
AB - Charged bases occur in RNA enzymes, or ribozymes, where they play key roles in catalysis. Cationic bases donate protons and perform electrostatic catalysis, while anionic bases accept protons. We previously published simulations of rate-pH profiles for ribozymes in terms of species plots for the general acid and general base that have been useful for understanding how ribozymes respond to pH. In that study, we did not consider interaction between the general acid and general base or interaction with other species on the RNA. Since that report, diverse small ribozyme classes have been discovered, many of which have charged nucleobases or metal ions in the active site that can either directly interact and participate in catalysis or indirectly interact as "influencers". Herein, we simulate experimental rate-pH profiles in terms of species plots in which reverse protonated charged nucleobases interact. These analyses uncover two surprising features of pH-dependent enzyme kinetics. (1) Cooperativity between the general acid and general base enhances population of the functional forms of a ribozyme and manifests itself as hidden or "dark" pKa shifts, real pKa shifts that accelerate the reaction but are not readily observed by standard experimental approaches, and (2) influencers favorably shift the pKas of proton-transferring nucleobases and manifest themselves as "wavy" rate-pH profiles. We identify parallels with the protein enzyme literature, including reverse protonation and wavelike behavior, while pointing out that RNA is more prone to reverse protonation. The complexities uncovered, which arise from simple pairwise interactions, should aid deconvolution of complex rate-pH profiles for RNA and protein enzymes and suggest veiled catalytic devices for promoting catalysis that can be tested by experiment and calculation.
UR - http://www.scopus.com/inward/record.url?scp=85041468201&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041468201&partnerID=8YFLogxK
U2 - 10.1021/acs.biochem.7b00784
DO - 10.1021/acs.biochem.7b00784
M3 - Review article
C2 - 29271644
AN - SCOPUS:85041468201
SN - 0006-2960
VL - 57
SP - 483
EP - 488
JO - Biochemistry
JF - Biochemistry
IS - 5
ER -