Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries

Dongyang Chen, Soowhan Kim, Vincent Sprenkle, Michael A. Hickner

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Composite membranes based on blends of sulfonated fluorinated poly(arylene ether) (SFPAE) and poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-co-HFP)) were prepared with varying P(VDF-co-HFP) content for vanadium redox flow battery (VRFB) applications. The properties of the SFPAE-P(VDF-co-HFP) blends were characterized by atomic force microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The water uptake, mechanical properties, thermal properties, proton conductivity, VO2+ permeability and VRFB cell performance of the composite membranes were investigated in detail and compared to the pristine SFPAE membrane. It was found that SFPAE had good compatibility with P(VDF-co-HFP) and the incorporation of P(VDF-co-HFP) increased the mechanical properties, thermal properties, and proton selectivity of the materials effectively. An SFPAE composite membrane with 10 wt.% P(VDF-co-HFP) exhibited a 44% increase in VRFB cell lifetime as compared to a cell with a pure SFPAE membrane. Therefore, the P(VDF-co-HFP) blending approach is a facile method for producing low-cost, high-performance VRFB membranes.

Original languageEnglish (US)
Pages (from-to)301-306
Number of pages6
JournalJournal of Power Sources
Volume231
DOIs
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries'. Together they form a unique fingerprint.

Cite this