Composite piezoelectric strip transducer development for structural health monitoring

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Piezoelectric fiber composite (PFC) transducers can be used to transmit and receive ultrasonic guided waves for structural health monitoring. Comb-type surface mounted PFC transducer strips are used to excite planar Lamb waves that interact with cracks and corrosion in a plate. Both finite element simulations and experiments examine the wave/defect interaction within a square domain that could be bounded by four strip transducers. In addition to transmitted, reflected, and scattered wave energy, beam spreading is investigated. Boundary conditions are applied in the finite element simulation to eliminate artificial end wall reflections. The experiments use a Doppler laser vibrometer to visualize wave propagation. Parallel PFC strips at wavelength spacing comprise an actuator that generates a wave field that is imaged by the scanning vibrometer. The results of the finite element simulation are qualitatively confirmed by the experiments.

Original languageEnglish (US)
Title of host publicationHealth Monitoring of Structural and Biological Systems 2011
DOIs
StatePublished - 2011
EventHealth Monitoring of Structural and Biological Systems 2011 - San Diego, CA, United States
Duration: Mar 7 2011Mar 10 2011

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume7984
ISSN (Print)0277-786X

Other

OtherHealth Monitoring of Structural and Biological Systems 2011
Country/TerritoryUnited States
CitySan Diego, CA
Period3/7/113/10/11

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Composite piezoelectric strip transducer development for structural health monitoring'. Together they form a unique fingerprint.

Cite this