TY - JOUR
T1 - Compound guided waves that mix characteristics of surface-Plasmon-Polariton, Tamm, Dyakonov-Tamm, and Uller-Zenneck waves
AU - Chiadini, Francesco
AU - Fiumara, Vincenzo
AU - Scaglione, Antonio
AU - Lakhtakia, Akhlesh
N1 - Publisher Copyright:
© 2016 Optical Society of America.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Solutions of the boundary-value problem for electromagnetic waves guided by a layer of a homogeneous and isotropic (metal or dielectric) material sandwiched between a structurally chiral material (SCM) and a periodically multilayered isotropic dielectric (PMLID) material were numerically obtained and analyzed. If the sandwiched layer is sufficiently thick, the two bimaterial interfaces decouple from each other, and each interface may guide one or more electromagnetic surface waves (ESWs) by itself. Depending on the constitution of the two materials that partner to form an interface, the ESWs can be classified as surface-plasmon-polariton waves, Tamm waves, Dyakonov-Tamm waves, or Uller-Zenneck waves. When the sandwiched layer is sufficiently thin, the ESWs for single bimaterial interfaces coalesce to form compound guided waves (CGWs). The phase speeds, propagation distances, and spatial profiles of the electromagnetic fields of CGWs are different from those of the ESWs. The energy of a CGW is distributed in both the SCM and the PMLID material, if the sandwiched layer is sufficiently thin. Some CGWs require the sandwiched layer to have a minimum thickness. Indeed, the coupling between the two faces of the sandwiched layer is affected by the ratio of the thickness of the sandwiched layer to the skin depth in that material and the rates at which the fields of the ESWs guided individually by the two interfaces decay away from their respective guiding interfaces.
AB - Solutions of the boundary-value problem for electromagnetic waves guided by a layer of a homogeneous and isotropic (metal or dielectric) material sandwiched between a structurally chiral material (SCM) and a periodically multilayered isotropic dielectric (PMLID) material were numerically obtained and analyzed. If the sandwiched layer is sufficiently thick, the two bimaterial interfaces decouple from each other, and each interface may guide one or more electromagnetic surface waves (ESWs) by itself. Depending on the constitution of the two materials that partner to form an interface, the ESWs can be classified as surface-plasmon-polariton waves, Tamm waves, Dyakonov-Tamm waves, or Uller-Zenneck waves. When the sandwiched layer is sufficiently thin, the ESWs for single bimaterial interfaces coalesce to form compound guided waves (CGWs). The phase speeds, propagation distances, and spatial profiles of the electromagnetic fields of CGWs are different from those of the ESWs. The energy of a CGW is distributed in both the SCM and the PMLID material, if the sandwiched layer is sufficiently thin. Some CGWs require the sandwiched layer to have a minimum thickness. Indeed, the coupling between the two faces of the sandwiched layer is affected by the ratio of the thickness of the sandwiched layer to the skin depth in that material and the rates at which the fields of the ESWs guided individually by the two interfaces decay away from their respective guiding interfaces.
UR - http://www.scopus.com/inward/record.url?scp=84973441125&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84973441125&partnerID=8YFLogxK
U2 - 10.1364/JOSAB.33.001197
DO - 10.1364/JOSAB.33.001197
M3 - Article
AN - SCOPUS:84973441125
SN - 0740-3224
VL - 33
SP - 1197
EP - 1206
JO - Journal of the Optical Society of America B: Optical Physics
JF - Journal of the Optical Society of America B: Optical Physics
IS - 6
ER -