TY - JOUR
T1 - Comprehensive linkage of defect and phase equilibria through ferroelectric transition behavior in BaTiO3-based dielectrics
T2 - Part 2. Defect modeling under low oxygen partial pressure conditions
AU - Lee, Soonil
AU - Randall, Clive A.
AU - Liu, Zi Kui
PY - 2008/6
Y1 - 2008/6
N2 - Defect and phase equilibria have been investigated through the ferroelectric phase transition behavior of pure and equilibrated nonstoichiometric BaTiO3 powders. The paraelectric-ferroelectric phase transition temperature (TC-T) was found to vary systematically with materials fabricated with different Ba/Ti ratio (g*) and under various oxygen partial pressure (Po2) conditions.1 The solubility regime, as determined through the TC-T variation, decreased with decreasing.(Po2) Determining the solubility limits and equilibrating the defect reactions at the solubility limits provide a direct approach to calculate the defect formation energies and provide data to test a new defect model for concurrent defect reactions of partial Schottky and reduction defects. A refined approach introduces a balanced equilibrium between the oxygen vacancy concentrations controlled by the partial Schottky and reduction reactions. In the limiting ambient cases the approach gives the expected results, and also fully explains the solubility trends under low Po2's. Universally, the theory supports all the experimental data over different temperatures and Po2's.
AB - Defect and phase equilibria have been investigated through the ferroelectric phase transition behavior of pure and equilibrated nonstoichiometric BaTiO3 powders. The paraelectric-ferroelectric phase transition temperature (TC-T) was found to vary systematically with materials fabricated with different Ba/Ti ratio (g*) and under various oxygen partial pressure (Po2) conditions.1 The solubility regime, as determined through the TC-T variation, decreased with decreasing.(Po2) Determining the solubility limits and equilibrating the defect reactions at the solubility limits provide a direct approach to calculate the defect formation energies and provide data to test a new defect model for concurrent defect reactions of partial Schottky and reduction defects. A refined approach introduces a balanced equilibrium between the oxygen vacancy concentrations controlled by the partial Schottky and reduction reactions. In the limiting ambient cases the approach gives the expected results, and also fully explains the solubility trends under low Po2's. Universally, the theory supports all the experimental data over different temperatures and Po2's.
UR - http://www.scopus.com/inward/record.url?scp=44649138489&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44649138489&partnerID=8YFLogxK
U2 - 10.1111/j.1551-2916.2008.02372.x
DO - 10.1111/j.1551-2916.2008.02372.x
M3 - Article
AN - SCOPUS:44649138489
SN - 0002-7820
VL - 91
SP - 1753
EP - 1761
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 6
ER -