TY - JOUR
T1 - Computation of a shrinking interface in a Hele-shaw cell\ast
AU - Zhao, Meng
AU - Li, Xiaofan
AU - Ying, Wenjun
AU - Belmonte, Andrew
AU - Lowengrub, John
AU - Li, Shuwang
N1 - Publisher Copyright:
© 2018 Society for Industrial and Applied Mathematics.
PY - 2018
Y1 - 2018
N2 - In this paper, we present an adaptive rescaling method for computing a shrinking interface in a Hele-Shaw cell with a time increasing gap width b(t). We focus our study on a one-phase interior Hele-Shaw problem where a blob of fluid, surrounded by air, dynamically responds to the changing gap width. Linear analysis suggests that there exist transient fingering instabilities and noncircular self-similar evolutions depending on the dynamics of the gap b(t). Using linear theory, we identify a critical dynamic gap thickness bck(t) that separates stable shrinking behavior (shrinkage like a circle) from unstable shrinkage (shrinkage like a fingering pattern), where k is the wavenumber of the perturbation. The gap bck tends to infinity at a finite time. To explore the full nonlinear interface dynamics, we develop a spectrally accurate boundary integral method in which a new time and space rescaling is implemented. In the rescaled frame, the motion of the interface is slowed down, while the area/volume enclosed by the interface remains unchanged. This method, for the first time, enables us to adaptively remove the severe numerical stiffness imposed by the rapidly shrinking interface (especially at late times) and accurately compute the dynamics to far longer times than could previously be accomplished. Numerical tests demonstrate that the method is stable, efficient, and accurate. We perform nonlinear simulations for different dynamics of gap widths and, while the transient interface dynamics can be very complex, we find behavior generally consistent with the predictions of linear theory regarding the critical gap width. In particular, we find that when the b(t) increases exponentially in time, the nonlinear interface undergoes transient and sometimes dramatic morphological instabilities but eventually shrinks as a circle. When b = bck, or larger gap widths are used, our simulations reveal that at long times, the interface exhibits novel, strikingly thin k-fold morphologies that do not vanish as the interface shrinks, suggesting there exists mode selection in the nonlinear regime though the evolution is not self-similar.
AB - In this paper, we present an adaptive rescaling method for computing a shrinking interface in a Hele-Shaw cell with a time increasing gap width b(t). We focus our study on a one-phase interior Hele-Shaw problem where a blob of fluid, surrounded by air, dynamically responds to the changing gap width. Linear analysis suggests that there exist transient fingering instabilities and noncircular self-similar evolutions depending on the dynamics of the gap b(t). Using linear theory, we identify a critical dynamic gap thickness bck(t) that separates stable shrinking behavior (shrinkage like a circle) from unstable shrinkage (shrinkage like a fingering pattern), where k is the wavenumber of the perturbation. The gap bck tends to infinity at a finite time. To explore the full nonlinear interface dynamics, we develop a spectrally accurate boundary integral method in which a new time and space rescaling is implemented. In the rescaled frame, the motion of the interface is slowed down, while the area/volume enclosed by the interface remains unchanged. This method, for the first time, enables us to adaptively remove the severe numerical stiffness imposed by the rapidly shrinking interface (especially at late times) and accurately compute the dynamics to far longer times than could previously be accomplished. Numerical tests demonstrate that the method is stable, efficient, and accurate. We perform nonlinear simulations for different dynamics of gap widths and, while the transient interface dynamics can be very complex, we find behavior generally consistent with the predictions of linear theory regarding the critical gap width. In particular, we find that when the b(t) increases exponentially in time, the nonlinear interface undergoes transient and sometimes dramatic morphological instabilities but eventually shrinks as a circle. When b = bck, or larger gap widths are used, our simulations reveal that at long times, the interface exhibits novel, strikingly thin k-fold morphologies that do not vanish as the interface shrinks, suggesting there exists mode selection in the nonlinear regime though the evolution is not self-similar.
UR - http://www.scopus.com/inward/record.url?scp=85053758263&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053758263&partnerID=8YFLogxK
U2 - 10.1137/18M1172533
DO - 10.1137/18M1172533
M3 - Article
AN - SCOPUS:85053758263
SN - 1064-8275
VL - 40
SP - B1206-B1228
JO - SIAM Journal on Scientific Computing
JF - SIAM Journal on Scientific Computing
IS - 4
ER -