Computational improvements to estimating Kriging metamodel parameters

Research output: Contribution to journalArticlepeer-review

51 Scopus citations


The details of a method to reduce the computational burden experienced while estimating the optimal model parameters for a Kriging model are presented. A Kriging model is a type of surrogate model that can be used to create a response surface based a set of observations of a computationally expensive system design analysis. This Kriging model can then be used as a computationally efficient surrogate to the original model, providing the opportunity for the rapid exploration of the resulting tradespace. The Kriging model can provide a more complex response surface than the more traditional linear regression response surface through the introduction of a few terms to quantify the spatial correlation of the observations. Implementation details and enhancements to gradient-based methods to estimate the model parameters are presented. It concludes with a comparison of these enhancements to using maximum likelihood estimation to estimate Kriging model parameters and their potential reduction in computational burden. These enhancements include the development of the analytic gradient and Hessian for the log-likelihood equation of a Kriging model that uses a Gaussian spatial correlation function. The suggested algorithm is similar to the SCORING algorithm traditionally used in statistics.

Original languageEnglish (US)
Pages (from-to)845011-845017
Number of pages7
JournalJournal of Mechanical Design
Issue number8
StatePublished - Aug 2009

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design


Dive into the research topics of 'Computational improvements to estimating Kriging metamodel parameters'. Together they form a unique fingerprint.

Cite this