Abstract
Quantum chemistry in the form of relativistic density functional theory (DFT) combined with a continuum solvation model has been applied to study the interaction of two prototypical ruthenium dyes (N3 and its chlorinated form) and redox mediators X- and X-2, X = Br, I, At, with a view at the elementary reactions within a dye-sensitized solar cell (DSSC). Along the series Br, I, and At, increasing bond lengths of X 2, X-2, and X-3 are found, as well as an increasing reducing power of the X-/X -3 redox couple. Inner-sphere sevencoordinate complexes between the dye and the redox species do not exist; however, the dyes form outersphere complexes with the X- and X-2 species. The thermodynamics of a recently proposed mechanism [J. Phys. Chem. C 2007, 111, 6561] involving a [dye+X-] intermediate are probed, and the existence of the intermediate and the elementary steps of the process are confirmed. The dye regeneration is thermodynamically more favorable for the N3 dye than its chlorinated counterpart. The regeneration of the neutral dye is favored for At, followed by the iodine and bromine systems (At > I > Br). This may be related to the observed superior performance in actual DSSCs of the iodide/triiodide redox couple over the alternative bromide/tribromide couple.
Original language | English (US) |
---|---|
Pages (from-to) | 15165-15173 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry C |
Volume | 114 |
Issue number | 35 |
DOIs | |
State | Published - Sep 9 2010 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films