Computational studies of the interaction between ruthenium dyes and X - and X-2, X = Br, I, At. implications for dye-sensitized solar cells

Ching Han Hu, Abu Md Asaduzzaman, Georg Schreckenbach

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Quantum chemistry in the form of relativistic density functional theory (DFT) combined with a continuum solvation model has been applied to study the interaction of two prototypical ruthenium dyes (N3 and its chlorinated form) and redox mediators X- and X-2, X = Br, I, At, with a view at the elementary reactions within a dye-sensitized solar cell (DSSC). Along the series Br, I, and At, increasing bond lengths of X 2, X-2, and X-3 are found, as well as an increasing reducing power of the X-/X -3 redox couple. Inner-sphere sevencoordinate complexes between the dye and the redox species do not exist; however, the dyes form outersphere complexes with the X- and X-2 species. The thermodynamics of a recently proposed mechanism [J. Phys. Chem. C 2007, 111, 6561] involving a [dye+X-] intermediate are probed, and the existence of the intermediate and the elementary steps of the process are confirmed. The dye regeneration is thermodynamically more favorable for the N3 dye than its chlorinated counterpart. The regeneration of the neutral dye is favored for At, followed by the iodine and bromine systems (At > I > Br). This may be related to the observed superior performance in actual DSSCs of the iodide/triiodide redox couple over the alternative bromide/tribromide couple.

Original languageEnglish (US)
Pages (from-to)15165-15173
Number of pages9
JournalJournal of Physical Chemistry C
Volume114
Issue number35
DOIs
StatePublished - Sep 9 2010

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Computational studies of the interaction between ruthenium dyes and X - and X-2, X = Br, I, At. implications for dye-sensitized solar cells'. Together they form a unique fingerprint.

Cite this