Concurrent Multi-Directional Beam-Forming Receiving Network for Full-FoV High-Efficiency Wireless Power Transfer

Min Yu Huang, Tzu Yuan Huang, Madhavan Swaminathan, Hua Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

This paper demonstrates an all-passive ultra-compact low-loss array-based beamforming rectenna array for high-efficiency wireless power transfer (WPT). The detailed circuit analysis and theoretical derivation are presented in the paper, showing that the proposed circuit can achieve full field-of-view (FoV) WPT operation with scalable array-based RF-to-DC efficiency improvement. A proof-of-concept 4-element rectenna design example at 2.4GHz is implemented in a 4-layer FR4-Rogers hybrid PCB. The compact transformer-based 4×4 Butler matrix design with at least 100× size reduction as the passive beamformer is implemented in the WPT design for supporting concurrent multi-direction beam reception. At 2.4GHz, measurement for the Butler matrix exhibits an insertion loss of 0.8dB, a return loss better than 10dB (DC-3GHz), and a peak-to-null ratio > 35dB. Then, with the proposed passive beamformer, the measurement results of the proposed WPT network achieves at least full-FoV 2.4× and a peak 3× RF-to-DC efficiency enhancement compared to conventional rectenna array design. To the best of our knowledge, this is the first complete analysis and demonstration of a compact scalable N-element array-based beamforming rectenna array network for full-FoV high-efficiency WPT.

Original languageEnglish (US)
Title of host publication2019 IEEE MTT-S International Microwave Symposium, IMS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1511-1514
Number of pages4
ISBN (Electronic)9781728113098
DOIs
StatePublished - Jun 2019
Event2019 IEEE MTT-S International Microwave Symposium, IMS 2019 - Boston, United States
Duration: Jun 2 2019Jun 7 2019

Publication series

NameIEEE MTT-S International Microwave Symposium Digest
ISSN (Print)0149-645X

Conference

Conference2019 IEEE MTT-S International Microwave Symposium, IMS 2019
Country/TerritoryUnited States
CityBoston
Period6/2/196/7/19

All Science Journal Classification (ASJC) codes

  • Radiation
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Concurrent Multi-Directional Beam-Forming Receiving Network for Full-FoV High-Efficiency Wireless Power Transfer'. Together they form a unique fingerprint.

Cite this