TY - GEN
T1 - Concurrent Prediction of Dexterous Finger Flexion and Extension Force via Deep Forest
AU - Fan, Jiahao
AU - Hu, Xiaogang
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Neuromuscular injuries can impair hand function and profoundly impacting the quality of life. This has motivated the development of advanced assistive robotic hands. However, the current neural decoder systems are limited in their ability to provide dexterous control of these robotic hands. In this study, we propose a novel method for predicting the extension and flexion force of three individual fingers concurrently using high-density electromyogram (HD-EMG) signals. Our method employs two deep forest models, the flexor decoder and the extensor decoder, to extract relevant representations from the EMG amplitude features. The outputs of the two decoders are integrated through linear regression to predict the forces of the three fingers. The proposed method was evaluated on data from three subjects and the results showed that it consistently outperforms the conventional EMG amplitude-based approach in terms of prediction error and robustness across both target and non-target fingers. This work presents a promising neural decoding approach for intuitive and dexterous control of the fingertip forces of assistive robotic hands.
AB - Neuromuscular injuries can impair hand function and profoundly impacting the quality of life. This has motivated the development of advanced assistive robotic hands. However, the current neural decoder systems are limited in their ability to provide dexterous control of these robotic hands. In this study, we propose a novel method for predicting the extension and flexion force of three individual fingers concurrently using high-density electromyogram (HD-EMG) signals. Our method employs two deep forest models, the flexor decoder and the extensor decoder, to extract relevant representations from the EMG amplitude features. The outputs of the two decoders are integrated through linear regression to predict the forces of the three fingers. The proposed method was evaluated on data from three subjects and the results showed that it consistently outperforms the conventional EMG amplitude-based approach in terms of prediction error and robustness across both target and non-target fingers. This work presents a promising neural decoding approach for intuitive and dexterous control of the fingertip forces of assistive robotic hands.
UR - http://www.scopus.com/inward/record.url?scp=85179649693&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85179649693&partnerID=8YFLogxK
U2 - 10.1109/EMBC40787.2023.10340256
DO - 10.1109/EMBC40787.2023.10340256
M3 - Conference contribution
C2 - 38083054
AN - SCOPUS:85179649693
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Y2 - 24 July 2023 through 27 July 2023
ER -