TY - JOUR
T1 - Condensed-phase species distributions about Al particles reacting in various oxidizers
AU - Bucher, P.
AU - Yetter, R. A.
AU - Dryer, F. L.
AU - Vicenzi, E. P.
AU - Parr, T. P.
AU - Hanson-Parr, D. M.
N1 - Funding Information:
This work was supported by the Office of Naval Research under contracts N00014-93-1-0732 and N00014-95-1-1339. The authors gratefully thank Dr. Richard Miller at ONR for funding this work. EPMA analysis was performed at the Princeton Materials Institute, Princeton University, by using MRSC Shared Facilities supported by the National Science Foundation under Award Number DMR-940032. The authors wish to thank Mr. Bernhard Klotz for valued assistance throughout the experimental portion of this work.
PY - 1999/4
Y1 - 1999/4
N2 - Experimental results on the combustion of single, isolated aluminum particles, laser ignited in quiescent environments consisting of pure N2O, CO2, CO and in mixtures of 21% O2/79% N2 and 21%O2 / 79% Ar are reported. Combustion measurements consisted of photographic observations and electron probe microanalysis (EPMA) of the condensed-phase product composition and radial distribution. Aluminum particles in O2, CO2, and N2O atmospheres were found to burn with envelope flames. Of these oxidizers, the largest flame envelope, as determined by the condensed-product distribution, occurred for Al combustion in the O2/Ar mixture, followed by Al combustion in the O2/N2 mixture, the CO2 atmosphere, and the N2O atmosphere. Combustion in the CO atmosphere appeared to occur on (near) the particle surface with only a weak envelope reaction. Consistent with previous results in the literature, Al particle disruption was not observed in O2/Ar environments, but was observed in O2/N2 environments. Although speculated in the literature, the present work confirms the existence of aluminum nitrides (oxy-nitrides) in the fuel-rich region near the particle surface for nitrogen-containing oxidizers (i.e., O2/N2 and N2O). Equilibrium calculations indicate that near the surface, solid-phase AlN may exist to temperatures well above the melting temperature of aluminum oxide. Thus, its presence may affect the fragmentation process. Finally, condensed-phase carbon (possibly in the form of aluminum carbide) was found throughout the surrounding gas-phase for CO combustion.
AB - Experimental results on the combustion of single, isolated aluminum particles, laser ignited in quiescent environments consisting of pure N2O, CO2, CO and in mixtures of 21% O2/79% N2 and 21%O2 / 79% Ar are reported. Combustion measurements consisted of photographic observations and electron probe microanalysis (EPMA) of the condensed-phase product composition and radial distribution. Aluminum particles in O2, CO2, and N2O atmospheres were found to burn with envelope flames. Of these oxidizers, the largest flame envelope, as determined by the condensed-product distribution, occurred for Al combustion in the O2/Ar mixture, followed by Al combustion in the O2/N2 mixture, the CO2 atmosphere, and the N2O atmosphere. Combustion in the CO atmosphere appeared to occur on (near) the particle surface with only a weak envelope reaction. Consistent with previous results in the literature, Al particle disruption was not observed in O2/Ar environments, but was observed in O2/N2 environments. Although speculated in the literature, the present work confirms the existence of aluminum nitrides (oxy-nitrides) in the fuel-rich region near the particle surface for nitrogen-containing oxidizers (i.e., O2/N2 and N2O). Equilibrium calculations indicate that near the surface, solid-phase AlN may exist to temperatures well above the melting temperature of aluminum oxide. Thus, its presence may affect the fragmentation process. Finally, condensed-phase carbon (possibly in the form of aluminum carbide) was found throughout the surrounding gas-phase for CO combustion.
UR - http://www.scopus.com/inward/record.url?scp=0032921235&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032921235&partnerID=8YFLogxK
U2 - 10.1016/S0010-2180(98)00074-1
DO - 10.1016/S0010-2180(98)00074-1
M3 - Article
AN - SCOPUS:0032921235
SN - 0010-2180
VL - 117
SP - 351
EP - 361
JO - Combustion and Flame
JF - Combustion and Flame
IS - 1-2
ER -