Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies

James H. Marden, Blanka Rogina, Kristi L. Montooth, Stephen L. Helfand

Research output: Contribution to journalArticlepeer-review

144 Scopus citations


Alterations that extend the life span of animals and yeast typically involve decreases in metabolic rate, growth, physical activity, and/or early-life fecundity. This negative correlation between life span and the ability to assimilate and process energy, to move, grow, and reproduce, raises questions about the potential utility of life span extension. Tradeoffs between early-life fitness and longevity are central to theories of the evolution of aging, which suggests there is necessarily a price to be paid for reducing the rate of aging. It is not yet clear whether life span can be extended without undesirable effects on metabolism and fecundity. Here, we report that the long-lived Indy mutation in Drosophila causes a decrease in the slope of the mortality curve consistent with a slowing in the rate of aging without a concomitant reduction in resting metabolic rate, flight velocity, or age-specific fecundity under normal rearing conditions. However, Indy mutants on a decreased-calorie diet have reduced fecundity, suggesting that a tradeoff between longevity and this aspect of performance is conditional, i.e., the tradeoff can occur in a stressful environment while being absent in a more favorable environment. These results provide evidence that there do exist mechanisms, albeit conditional, that can extend life span without significant reduction in fecundity, metabolic rate, or locomotion.

Original languageEnglish (US)
Pages (from-to)3369-3373
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number6
StatePublished - Mar 18 2003

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies'. Together they form a unique fingerprint.

Cite this