Confocal depth-resolved micro-X-ray absorption spectroscopy study of chemically strengthened boroaluminosilicate glasses

Pieter Tack, Stephen Bauters, John C. Mauro, Morten M. Smedskjaer, Bart Vekemans, Dipanjan Banerjee, Wim Bras, Laszlo Vincze

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

It is crucial to understand the structural origins of macroscopic properties in silicate glasses for their high-tech applications. An example of such an application is chemically strengthened boroaluminosilicate glasses that are exposed to an ion exchange process during which alkali ions (e.g. Na+) are replaced by larger (e.g. K+) ions. Despite the empirically thorough understanding of this exchange process, much less is known about the fundamental physics of the process. Since Fe atoms are a suitable probe for monitoring chemical stress-induced changes in the local structure in the chemically strengthened glasses, a set of chemically strengthened boroaluminosilicate glasses containing 1 mol% Fe2O3 are here studied using depth-resolved confocal X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Information on the Fe oxidation state, coordination number, and bond distance as a function of the sample depth and glass composition is obtained. These new insights on chemical stress-induced changes will aid in the further development and improvement of such damage-resistant glasses.

Original languageEnglish (US)
Pages (from-to)24060-24065
Number of pages6
JournalRSC Advances
Volume6
Issue number29
DOIs
StatePublished - 2016

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Confocal depth-resolved micro-X-ray absorption spectroscopy study of chemically strengthened boroaluminosilicate glasses'. Together they form a unique fingerprint.

Cite this