TY - JOUR
T1 - Conformational changes in serpins
T2 - I. The native and cleaved conformations of α1-antitrypsin
AU - Whisstock, James C.
AU - Skinner, Richard
AU - Carrell, Robin W.
AU - Lesk, Arthur M.
N1 - Funding Information:
We thank the Wellcome Trust, the Medical Research Council, the British Heart foundation, the NHMRC (grant no. 997144) and the Australian Research Council (grant no. A09702079) for support.
PY - 2000/2/18
Y1 - 2000/2/18
N2 - The serpins (SERine Proteinase INhibitors) are a family of proteins with important physiological roles, including but not limited to the inhibition of chymotrypsin-like serine proteinases. The inhibitory mechanism involves a large conformational change known as the S → R (stressed → relaxed) transition. The largest structural differences occur in a region around the scissile bond called the reactive centre loop: In the native (S) state, the reactive centre is exposed, and is free to interact with proteinases. In inhibitory serpins, in the cleaved (R) state the reactive centre loop forms an additional strand within the β-sheet. The latent state is an uncleaved state in which the intact reactive centre loop is integrated into the A sheet as in the cleaved form, to give an alternative R state. The serpin structures illustrate detailed control of conformation within a single protein. Serpins are also an unusual family of proteins in which homologues have native states with different folding topologies. Determination of the structures of inhibitory serpins in multiple conformational states permits a detailed analysis of the mechanism of the S → R transition, and of the way in which a single sequence can form two stabilised states of different topology. Here we compare the conformations of α1-antitrypsin in native and cleaved states. Many protein conformational changes involve relative motions of large rigid subunits. We determine the rigid subunits of α1-antitrypsin and analyse the changes in their relative position and orientation. Knowing that the conformational change is initiated by cleavage at the reactive centre, we describe a mechanism of the S → R transition as a logical sequence of mechanical effects, even though the transition likely proceeds in a concerted manner. (C) 2000 Academic Press.
AB - The serpins (SERine Proteinase INhibitors) are a family of proteins with important physiological roles, including but not limited to the inhibition of chymotrypsin-like serine proteinases. The inhibitory mechanism involves a large conformational change known as the S → R (stressed → relaxed) transition. The largest structural differences occur in a region around the scissile bond called the reactive centre loop: In the native (S) state, the reactive centre is exposed, and is free to interact with proteinases. In inhibitory serpins, in the cleaved (R) state the reactive centre loop forms an additional strand within the β-sheet. The latent state is an uncleaved state in which the intact reactive centre loop is integrated into the A sheet as in the cleaved form, to give an alternative R state. The serpin structures illustrate detailed control of conformation within a single protein. Serpins are also an unusual family of proteins in which homologues have native states with different folding topologies. Determination of the structures of inhibitory serpins in multiple conformational states permits a detailed analysis of the mechanism of the S → R transition, and of the way in which a single sequence can form two stabilised states of different topology. Here we compare the conformations of α1-antitrypsin in native and cleaved states. Many protein conformational changes involve relative motions of large rigid subunits. We determine the rigid subunits of α1-antitrypsin and analyse the changes in their relative position and orientation. Knowing that the conformational change is initiated by cleavage at the reactive centre, we describe a mechanism of the S → R transition as a logical sequence of mechanical effects, even though the transition likely proceeds in a concerted manner. (C) 2000 Academic Press.
UR - http://www.scopus.com/inward/record.url?scp=0034681281&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034681281&partnerID=8YFLogxK
U2 - 10.1006/jmbi.1999.3520
DO - 10.1006/jmbi.1999.3520
M3 - Article
C2 - 10669617
AN - SCOPUS:0034681281
SN - 0022-2836
VL - 296
SP - 685
EP - 699
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 2
ER -