Consistent selection of the number of change-points via sample-splitting

Changliang Zou, Guanghui Wang, Runze Li

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

In multiple change-point analysis, one of the major challenges is to estimate the number of change-points. Most existing approaches attempt to minimize a Schwarz information criterion which balances a term quantifying model fit with a penalization term accounting for model complexity that increases with the number of change-points and limits overfitting. However, different penalization terms are required to adapt to different contexts of multiple change-point problems and the optimal penalization magnitude usually varies from the model and error distribution. We propose a data-driven selection criterion that is applicable to most kinds of popular change-point detection methods, including binary segmentation and optimal partitioning algorithms. The key idea is to select the number of change-points that minimizes the squared prediction error, which measures the fit of a specified model for a new sample. We develop a cross-validation estimation scheme based on an order-preserved sample-splitting strategy, and establish its asymptotic selection consistency under some mild conditions. Effectiveness of the proposed selection criterion is demonstrated on a variety of numerical experiments and real-data examples.

Original languageEnglish (US)
Pages (from-to)413-439
Number of pages27
JournalAnnals of Statistics
Volume48
Issue number1
StatePublished - 2020

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Fingerprint

Dive into the research topics of 'Consistent selection of the number of change-points via sample-splitting'. Together they form a unique fingerprint.

Cite this