Constant C(wall) ultrafiltration process control

R. Van Reis, E. M. Goodrich, C. L. Yson, L. N. Frautschy, R. Whiteley, A. L. Zydney

Research output: Contribution to journalArticlepeer-review

64 Scopus citations


Ultrafiltration processes normally operate with constant transmembrane pressure. The tradition of such control derives from its inherent simplicity. Both fundamental and practical considerations suggest, however, that ultrafiltration processes should be controlled by maintaining a constant wall concentration (CW) of fully retained solutes. Since protein sieving, solubility, and adsorption losses as well as time and area optimization are dependent on CW, we investigated a control strategy using constant CW instead of constant transmembrane pressure. We explored three different strategies for such control and evaluated the theoretical and industrial implications for single solute systems. The effects of solute wall concentration on process time and product yield were also evaluated. Implementation of this technology required the development of a novel methodology for determination of mass transfer coefficients. The use of CW technology also led to the development of new optimization schemes for both concentration and diafiltration. Industrial scale processes using constant CW control have been successfully implemented on several recombinant DNA derived human protein pharmaceuticals. Constant CW control has eliminated variability in process time, enhanced product yields, and provided insurance of tight protein product quality specifications. Optimum process design based on fundamental filtration theory has replaced empirical development procedures.

Original languageEnglish (US)
Pages (from-to)123-140
Number of pages18
JournalJournal of Membrane Science
Issue number1-2
StatePublished - Jul 23 1997

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • General Materials Science
  • Physical and Theoretical Chemistry
  • Filtration and Separation


Dive into the research topics of 'Constant C(wall) ultrafiltration process control'. Together they form a unique fingerprint.

Cite this