TY - JOUR
T1 - Constrained densification of alumina/zirconia hybrid laminates, I
T2 - Experimental observations of processing defects
AU - Cai, Peter Z.
AU - Green, David J.
AU - Messing, Gary L.
PY - 1997/8
Y1 - 1997/8
N2 - Various forms of damage were observed in pressure-less-sintered Al2O3/ZrO2 symmetric laminates and asymmetric laminates (bilayers) fabricated by tape casting and lamination. These defects included channel cracks in the ZrO2 layers, Al2O3 edge-effect cracks parallel to the layers, delamination in the Al2O3 layers, and debonding between the Al2O3 and ZrO2 layers. Based on detailed microscopic observations, the defects were attributed to sintering rate and thermal expansion mismatch between the layers. Cracks or cracklike defects were formed in the early stages of densification, and these cracks either opened during sintering or acted as preexisting flaws for thermal expansion mismatch cracks. Consequently, the extent of cracking could be reduced or even eliminated by decreasing mismatch stresses during the sintering and cooling stages. This can be accomplished by reducing the heating and/or cooling rates or by adding Al2O3 in the ZrO2 layers. The sintering mismatch stresses were estimated from the degree of curling in asymmetric laminates and from layer viscosities that were obtained by cyclic loading dilatometry. The measured curvature was an indication of the mismatch in sintering strain between Al2O3 and ZrO2 and were consistent with the dilatometric data that were obtained for the component layers.
AB - Various forms of damage were observed in pressure-less-sintered Al2O3/ZrO2 symmetric laminates and asymmetric laminates (bilayers) fabricated by tape casting and lamination. These defects included channel cracks in the ZrO2 layers, Al2O3 edge-effect cracks parallel to the layers, delamination in the Al2O3 layers, and debonding between the Al2O3 and ZrO2 layers. Based on detailed microscopic observations, the defects were attributed to sintering rate and thermal expansion mismatch between the layers. Cracks or cracklike defects were formed in the early stages of densification, and these cracks either opened during sintering or acted as preexisting flaws for thermal expansion mismatch cracks. Consequently, the extent of cracking could be reduced or even eliminated by decreasing mismatch stresses during the sintering and cooling stages. This can be accomplished by reducing the heating and/or cooling rates or by adding Al2O3 in the ZrO2 layers. The sintering mismatch stresses were estimated from the degree of curling in asymmetric laminates and from layer viscosities that were obtained by cyclic loading dilatometry. The measured curvature was an indication of the mismatch in sintering strain between Al2O3 and ZrO2 and were consistent with the dilatometric data that were obtained for the component layers.
UR - http://www.scopus.com/inward/record.url?scp=0031197383&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031197383&partnerID=8YFLogxK
U2 - 10.1111/j.1151-2916.1997.tb03075.x
DO - 10.1111/j.1151-2916.1997.tb03075.x
M3 - Article
AN - SCOPUS:0031197383
SN - 0002-7820
VL - 80
SP - 1929
EP - 1939
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 8
ER -