TY - JOUR
T1 - Constrained Markov Decision Process Modeling for Optimal Sensing of Cardiac Events in Mobile Health
AU - Yao, Bing
AU - Chen, Yun
AU - Yang, Hui
N1 - Publisher Copyright:
© 2004-2012 IEEE.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Rapid advances in the smartphone, wearable sensing, and wireless communication provide an unprecedented opportunity to develop mobile systems for smart health management. Mobile cardiac sensing collects health-related data from individuals and enables the extraction of information pertinent to cardiac conditions. However, wireless sensors in ambulatory care settings operate on batteries. All-time sensing and monitoring will result in fast depletion of the battery in the mobile system. There is an urgent need to develop optimal sensing schemes that will reduce energy consumption while satisfying the requirements in the detection of cardiac events. In this article, we develop a constrained Markov decision process (CMDP) framework to optimize mobile electrocardiography (ECG) sensing under the constraint of the energy budget. We first characterize the cardiac states from ECG signals using the heterogeneous recurrence analysis. Second, we model the stochastic dynamics in cardiac processes as a continuous-time Markov chain (CTMC). Third, we optimize the ECG sensing through a CMDP framework under the constraint of energy budget. Finally, we validate and evaluate the performance of our CMDP policy in both simulation and real-world case studies. Experimental results demonstrate that the proposed CMDP policy significantly outperforms the traditional uniform and mean-time-to-event (MTTE) policies. Specifically, the error of state estimation is reduced by 34.0% in the real-world case study for energy-constrained sensing of cardiac events. Note to Practitioners - This article is motivated by the markedly increasing applications of mobile health (mHealth) in cardiac care. MHealth systems enable the real-time monitoring, tracking, and transmitting of heart-health information but suffer from the problem with limited battery life. This article presents a novel energy-efficient framework for mobile ECG sensing by integrating ECG signal analysis with sensing-policy optimization under the constraint of the energy budget. Experimental results demonstrate the effectiveness of the proposed framework to realize energy-efficient mobile sensing for cardiac events detection.
AB - Rapid advances in the smartphone, wearable sensing, and wireless communication provide an unprecedented opportunity to develop mobile systems for smart health management. Mobile cardiac sensing collects health-related data from individuals and enables the extraction of information pertinent to cardiac conditions. However, wireless sensors in ambulatory care settings operate on batteries. All-time sensing and monitoring will result in fast depletion of the battery in the mobile system. There is an urgent need to develop optimal sensing schemes that will reduce energy consumption while satisfying the requirements in the detection of cardiac events. In this article, we develop a constrained Markov decision process (CMDP) framework to optimize mobile electrocardiography (ECG) sensing under the constraint of the energy budget. We first characterize the cardiac states from ECG signals using the heterogeneous recurrence analysis. Second, we model the stochastic dynamics in cardiac processes as a continuous-time Markov chain (CTMC). Third, we optimize the ECG sensing through a CMDP framework under the constraint of energy budget. Finally, we validate and evaluate the performance of our CMDP policy in both simulation and real-world case studies. Experimental results demonstrate that the proposed CMDP policy significantly outperforms the traditional uniform and mean-time-to-event (MTTE) policies. Specifically, the error of state estimation is reduced by 34.0% in the real-world case study for energy-constrained sensing of cardiac events. Note to Practitioners - This article is motivated by the markedly increasing applications of mobile health (mHealth) in cardiac care. MHealth systems enable the real-time monitoring, tracking, and transmitting of heart-health information but suffer from the problem with limited battery life. This article presents a novel energy-efficient framework for mobile ECG sensing by integrating ECG signal analysis with sensing-policy optimization under the constraint of the energy budget. Experimental results demonstrate the effectiveness of the proposed framework to realize energy-efficient mobile sensing for cardiac events detection.
UR - http://www.scopus.com/inward/record.url?scp=85100471662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100471662&partnerID=8YFLogxK
U2 - 10.1109/TASE.2021.3052483
DO - 10.1109/TASE.2021.3052483
M3 - Article
AN - SCOPUS:85100471662
SN - 1545-5955
VL - 19
SP - 1017
EP - 1029
JO - IEEE Transactions on Automation Science and Engineering
JF - IEEE Transactions on Automation Science and Engineering
IS - 2
ER -