TY - JOUR
T1 - Constraints on Lake Agassiz discharge through the late-glacial Champlain Sea (St. Lawrence Lowlands, Canada) using salinity proxies and an estuarine circulation model
AU - Katz, Brandon
AU - Najjar, Raymond G.
AU - Cronin, Thomas
AU - Rayburn, John
AU - Mann, Michael E.
N1 - Funding Information:
This research was supported by Cooperative Agreement 07ERAG0002 from the United States Geological Survey Global Change Program . We thank Parker MacCready for making his numerical model available and we are grateful for the comments of two anonymous reviewers.
PY - 2011/11
Y1 - 2011/11
N2 - During the last deglaciation, abrupt freshwater discharge events from proglacial lakes in North America, such as glacial Lake Agassiz, are believed to have drained into the North Atlantic Ocean, causing large shifts in climate by weakening the formation of North Atlantic Deep Water and decreasing ocean heat transport to high northern latitudes. These discharges were caused by changes in lake drainage outlets, but the duration, magnitude and routing of discharge events, factors which govern the climatic response to freshwater forcing, are poorly known. Abrupt discharges, called floods, are typically assumed to last months to a year, whereas more gradual discharges, called routing events, occur over centuries. Here we use estuarine modeling to evaluate freshwater discharge from Lake Agassiz and other North American proglacial lakes into the North Atlantic Ocean through the St. Lawrence estuary around 11.5 ka BP, the onset of the Preboreal oscillation (PBO). Faunal and isotopic proxy data from the Champlain Sea, a semi-isolated, marine-brackish water body that occupied the St. Lawrence and Champlain Valleys from 13 to 9 ka, indicate salinity fell about 7-8 (range of 4-11) around 11.5 ka. Model results suggest that minimum (1600 km3) and maximum (9500 km3) estimates of plausible flood volumes determined from Lake Agassiz paleoshorelines would produce the proxy-reconstructed salinity decrease if the floods lasted <1 day to 5 months and 1 month to 2 years, respectively. In addition, Champlain Sea salinity responds very quickly to the initiation (within days) and cessation (within weeks) of flooding events. These results support the hypothesis that a glacial lake flood, rather than a sustained routing event, discharged through the St. Lawrence Estuary during the PBO.
AB - During the last deglaciation, abrupt freshwater discharge events from proglacial lakes in North America, such as glacial Lake Agassiz, are believed to have drained into the North Atlantic Ocean, causing large shifts in climate by weakening the formation of North Atlantic Deep Water and decreasing ocean heat transport to high northern latitudes. These discharges were caused by changes in lake drainage outlets, but the duration, magnitude and routing of discharge events, factors which govern the climatic response to freshwater forcing, are poorly known. Abrupt discharges, called floods, are typically assumed to last months to a year, whereas more gradual discharges, called routing events, occur over centuries. Here we use estuarine modeling to evaluate freshwater discharge from Lake Agassiz and other North American proglacial lakes into the North Atlantic Ocean through the St. Lawrence estuary around 11.5 ka BP, the onset of the Preboreal oscillation (PBO). Faunal and isotopic proxy data from the Champlain Sea, a semi-isolated, marine-brackish water body that occupied the St. Lawrence and Champlain Valleys from 13 to 9 ka, indicate salinity fell about 7-8 (range of 4-11) around 11.5 ka. Model results suggest that minimum (1600 km3) and maximum (9500 km3) estimates of plausible flood volumes determined from Lake Agassiz paleoshorelines would produce the proxy-reconstructed salinity decrease if the floods lasted <1 day to 5 months and 1 month to 2 years, respectively. In addition, Champlain Sea salinity responds very quickly to the initiation (within days) and cessation (within weeks) of flooding events. These results support the hypothesis that a glacial lake flood, rather than a sustained routing event, discharged through the St. Lawrence Estuary during the PBO.
UR - http://www.scopus.com/inward/record.url?scp=82455210777&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82455210777&partnerID=8YFLogxK
U2 - 10.1016/j.quascirev.2011.08.006
DO - 10.1016/j.quascirev.2011.08.006
M3 - Article
AN - SCOPUS:82455210777
SN - 0277-3791
VL - 30
SP - 3248
EP - 3257
JO - Quaternary Science Reviews
JF - Quaternary Science Reviews
IS - 23-24
ER -