Obesity is a highly heritable condition that affects increasing numbers of adults and, concerningly, of children. However, only a small fraction of its heritability has been attributed to specific genetic variants. These variants are traditionally ascertained from genome-wide association studies (GWAS), which utilize samples with tens or hundreds of thousands of individuals for whom a single summary measurement (e.g., BMI) is collected. An alternative approach is to focus on a smaller, more deeply characterized sample in conjunction with advanced statistical models that leverage longitudinal phenotypes. Novel functional data analysis (FDA) techniques are used to capitalize on longitudinal growth information from a cohort of children between birth and three years of age. In an ultra-high dimensional setting, hundreds of thousands of single nucleotide polymorphisms (SNPs) are screened, and selected SNPs are used to construct two polygenic risk scores (PRS) for childhood obesity using a weighting approach that incorporates the dynamic and joint nature of SNP effects. These scores are significantly higher in children with (vs. without) rapid infant weight gain—a predictor of obesity later in life. Using two independent cohorts, it is shown that the genetic variants identified in very young children are also informative in older children and in adults, consistent with early childhood obesity being predictive of obesity later in life. In contrast, PRSs based on SNPs identified by adult obesity GWAS are not predictive of weight gain in the cohort of young children. This provides an example of a successful application of FDA to GWAS. This application is complemented with simulations establishing that a deeply characterized sample can be just as, if not more, effective than a comparable study with a cross-sectional response. Overall, it is demonstrated that a deep, statistically sophisticated characterization of a longitudinal phenotype can provide increased statistical power to studies with relatively small sample sizes; and shows how FDA approaches can be used as an alternative to the traditional GWAS.

Original languageEnglish (US)
Pages (from-to)66-86
Number of pages21
JournalEconometrics and Statistics
StatePublished - Jan 2023

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Economics and Econometrics
  • Statistics, Probability and Uncertainty


Dive into the research topics of 'Constructing a polygenic risk score for childhood obesity using functional data analysis'. Together they form a unique fingerprint.

Cite this