@inproceedings{23ed0f31b5394883af18759385531c92,
title = "Continuous-time regression models for longitudinal networks",
abstract = "The development of statistical models for continuous-time longitudinal network data is of increasing interest in machine learning and social science. Leveraging ideas from survival and event history analysis, we introduce a continuous-time regression modeling framework for network event data that can incorporate both time-dependent network statistics and time-varying regression coefficients. We also develop an efficient inference scheme that allows our approach to scale to large networks. On synthetic and real-world data, empirical results demonstrate that the proposed inference approach can accurately estimate the coefficients of the regression model, which is useful for interpreting the evolution of the network; furthermore, the learned model has systematically better predictive performance compared to standard baseline methods.",
author = "Vu, {Duy Q.} and Asuncion, {Arthur U.} and Hunter, {David R.} and Padhraic Smyth",
year = "2011",
language = "English (US)",
isbn = "9781618395993",
series = "Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011",
publisher = "Neural Information Processing Systems",
booktitle = "Advances in Neural Information Processing Systems 24",
note = "25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 ; Conference date: 12-12-2011 Through 14-12-2011",
}