Abstract
We have studied a model square-rectangular proper ferroelastic transition in an inhomogeneous stress field (R) with nonzero deviatoric stress component. This stress field can induce spatially heterogeneous transformations. Quasi-one-dimensional solutions for the lattice displacement fields u are derived both analytically and numerically for some special choices of stress functions. We find that the local instability is influenced by three factors: temperature, the magnitude of the applied stress, and the stress size. A critical strength c(=0.801 in dimensionless units) exists such that for (R)max>c a local transition can occur without an activation energy. The constraints of boundary conditions on the allowed solutions are also examined, and single-phase or twinned embryos may be formed through local transitions for free boundary conditions or fixed ends, respectively.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 4334-4340 |
| Number of pages | 7 |
| Journal | Physical Review B |
| Volume | 42 |
| Issue number | 7 |
| DOIs | |
| State | Published - 1990 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics